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Abstract: Spacecraft payloads are the sensing components that remain active over time and ensure 

Spacecraft's capability to perform multiple operations. It determines the rate of mission extension and the amount 

of scientific return based on extended performance. But it degrades over time due to the continuous process of 

operation and several space environmental factors. This paper has estimated payload mass fraction using the 

Spacecraft's data to relate it to the lifetime of orbital Spacecraft. Our prime intent is to check whether the 

spacecraft payload mass fraction affects the Spacecraft's lifetime concerning the initial hypothesis that the 

spacecraft mass greatly influences spacecraft lifetime. We derive some mathematical relation and establish a 

relationship between spacecraft payload mass fraction and lifetime. Finally, to verify our relation, we employ 

spacecraft data to investigate and interpret reliability behavior based on payload fraction and lifetime relation. 
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1. Acronyms and Subscripts 

𝑚𝐺 -  Gross mass of the spacecraft (kilograms) 

𝑚𝐷 -  Dry mass of the spacecraft (kilograms) 

𝑚𝑃𝑃 -  Propellant mass (kilograms) 

𝑚𝑃𝐿 -  Payload mass (kilograms) 

𝛿 -  Spacecraft payload mass fraction 

𝛿𝐺 -  Spacecraft payload mass fraction concerning gross mass 

𝛿𝐷 -  Spacecraft payload mass fraction concerning dry mass 

𝑡 -  Mission lifetime of the spacecraft (years) 

𝑘 -  Inverse proportionality constant 
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2. Introduction 

 

pacecraft payloads and their numbers are determined based on their target of exploration, where their number 

of instruments reflects their multiple capabilities to accomplish numerous objectives. So, the number of 

payloads proportionate to the spacecraft mass also has a significant contribution to the spacecraft's lifetime. 

Concerning our preceding paper and literature analysis on spacecraft reliability based on mass category [1-5], we 

investigate how the payload mass fraction has a significant contribution to the spacecraft's lifetime. We use 

spacecraft data such as spacecraft payload mass, dry mass, and gross mass to estimate and introduce a novel 

spacecraft parameter called "spacecraft payload mass fraction." We then relate it to the lifetime of the orbital 

Spacecraft. Finally, we derive and verify the payload fraction-lifetime relation using the spacecraft data gathered 

from SpaceTrak. 

 

3. Research Methodology 

 The first phase of our study reviews the significance of reliability and spacecraft lifetime based on earlier 

analysis and investigation reports [1-5]. 

 We define and introduce a novel spacecraft parameter called "Spacecraft's Payload Mass Fraction”, based 

on the spacecraft reliability analysis over various mass categories and mass fractions. 

 Then, we gather spacecraft data from [6,7] in terms of Spacecraft's gross mass, dry mass, propellant mass, 

maximum payload mass, elapsed lifespan, and design lifetime. 

 Overall, we gathered a data sample of 9000+ inactive, retired, and active Spacecraft from the International 

registered database "SpaceTrak," as of 1st May 2021. Out of 9000+ data. We have sorted out 236 data 

samples that are complete with full data descriptions. 

 Then using the gathered data, the spacecraft payload mass fraction ( 𝛿𝐷, 𝛿𝐺) were estimated using the 

introduced mass fraction relation defined in equation (1-2). 

 Further, the estimated data were plotted against the Spacecraft's lifetime, followed by the execution of the 

linear curve fitting algorithm. 

 We established a relation between the Spacecraft's payload mass fraction and its lifetime employing the 

curve fitting results. 

 Based on the resultant graphs, we estimated the slope parameter (∆) whose inverse gives the ratio of 

payload mass fraction and lifetime. 

 Furthermore, we have defined the Spacecraft's lifetime equation (t) concerning distinct mass category (𝛿). 

We then plot the lifetime equation to discuss how the spacecraft mass fraction affects the spacecraft 

lifetime (t). 

 Finally, we discuss the possible causes responsible for the difference in lifetime behavior characteristics 

and have recommended some effective countermeasures for enhancing lifetime. 

4. Formulations 

4.1. Spacecraft Payload Fraction 

Technically, in aerospace engineering, the payload fraction is estimated for launch vehicles with respect to 

payload mass. It is the measure of payload mass to the mass of the launch vehicle. Similarly, we can extend this 

approach to estimate payload fraction for Spacecraft because it gives satisfactory results in terms of spacecraft 

lifetime (t). To extend this approach, we use the same convention as a payload fraction to introduce "Spacecraft 

payload fraction," which is the measure of the ratio of payload mass (i.e., the total mass of onboard instruments) 

to either gross mass and dry mass. Mathematically, we can write the ratio as, 

 𝜹𝑮 =
𝒎𝑷𝑳

𝒎𝑮

 
Eq(1) 

 

(and) 

 

 𝜹𝑫 =
𝒎𝑷𝑳

𝒎𝑫

 
Eq(2) 

 

S 
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5. Relating the Spacecraft’s Payload Fraction with Lifetime 

5.1. Spacecraft’s Payload Fraction with Lifetime Relative to Gross Mass 

Figure 1 Linear Curve Fit for the Spacecraft Payload Mass Fraction (𝛿𝐺) and Lifetime (t) 

Our gathered data samples have only 130 rows with complete data, and it is not sufficient to interpret the 

results. Hence, we collected data of active Spacecraft's data as of 1 May 2021, and we gathered 236 data samples 

of all Spacecraft. Linear fit over spacecraft payload mass fraction showed the following results. It reflects that the 

Spacecraft's payload fraction is inversely proportional to the lifetime of orbital Spacecraft. Hence, 

 𝜹 ∝  
𝟏

𝒕
 Eq(3) 

 𝛿 = 𝑘 
1

𝑡
  

 𝑡 =  
𝑘

𝛿
 Eq(4) 

 𝑘 =  𝛿𝑡 Eq(5) 

Where, 

𝑘 – Inverse proportionality constant 

𝜹  - Spacecraft’s Payload Mass Fraction 

𝑡  - Spacecraft’s lifetime (years) 

Equation (4) establishes the relationship between spacecraft payload mass fraction and lifetime. 

5.2. Spacecraft’s Payload Mass Fraction with Lifetime Relative to Gross Mass (Fueled & Unfueled) 

Rewriting the equation (4) for Spacecraft's payload mass fraction concerning gross mass  

Spacecraft payload fraction for gross mass 

(with fuel) 
𝒌 =  𝜹𝑮(𝒕) Eq(6) 

 
𝑡 =  

𝑘

(
𝑚𝑃𝐿

𝑚𝐺
)
 

 

 

 𝑡 = 𝑘 (
𝑚𝐺

𝑚𝑃𝐿

) Eq(7) 

The above equation gives the lifetime of Spacecraft concerning payload mass fraction against gross mass (𝛿𝐺). 

5.3. Estimating the Slope Parameter from Graph 

From figure 1, the slope gives the ratio of a lifetime and the Spacecraft's payload mass fraction. 

 
𝑺𝒍𝒐𝒑𝒆 (∆) =

𝒕

𝜹𝑮

 
    Eq(8) 
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Then the inverse of the slope gives the ratio of Spacecraft's payload mass fraction and lifetime. The 

slope parameters are found to be (∆= -24.27559±2.01848), and its inverse gives  

 𝟏

𝑺𝒍𝒐𝒑𝒆 (∆)
=

𝜹𝑮

𝒕
=  −𝟎. 𝟎𝟒𝟏𝟏𝟗 

Eq(9) 

Finally, the equation for the lifetime of the Spacecraft is  

 
𝒕 =  

𝒌

𝜹𝑮

 (𝒀𝒆𝒂𝒓𝒔) 
Eq(10) 

Plotting the resultant equation shows the following results 

Figure 2 Resultant Equation Plot for Spacecraft Payload Mass Fraction and Lifetime (𝜹𝑮) 

6. Spacecraft’s Payload Fraction with Lifetime Relative to Dry Mass 

6.1. Formulations 

Employing equation (2), we estimated payload mass fraction against dry spacecraft mass using 236 data 

samples. Then the data were plotted against Spacecraft's lifetime to perform a linear curve fit. The fitting 

function showed the following results. 

Figure 3 Linear Curve Fit for the Spacecraft Payload Fraction (𝛿𝐷) and Lifetime (t) 

 The results show that the spacecraft payload mass fraction concerning dry mass is inversely 

proportional to the lifetime of the Spacecraft. 

 𝜹𝑫  ∝  
𝟏

𝒕
   Eq(11) 

 𝛿𝐷 = 𝑘 
1

𝑡
  

 𝑡 =  
𝑘

𝛿𝐷

   Eq(12) 

 𝑘 =  𝛿𝐷𝑡   Eq(13) 

Where, 

𝒌 – Inverse proportionality constant 
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𝜹𝐷  - Spacecraft’s Payload Mass Fraction 

𝒕  - Spacecraft’s lifetime (years) 

The equation (4) establishes the relationship between spacecraft payload mass fraction (𝜹𝐷) and lifetime. 

 Rewriting the equation (13) for spacecraft’s payload mass fraction (𝜹𝐷)   

Spacecraft payload fraction for dry mass 

(without fuel) 
𝒌 =  𝜹𝑫(𝒕) Eq(14) 

 
𝑡 =  

𝑘

(
𝑚𝑃𝐿

𝑚𝐷
)
 

 

 

 𝑡 = 𝑘 (
𝑚𝐷

𝑚𝑃𝐿

) Eq(15) 

 

The above equation gives the lifetime of Spacecraft concerning payload mass fraction against dry mass. 

6.2. Estimating the Slope Parameter from Graph 

From figure 3, the slope gives the ratio of a lifetime and the Spacecraft's payload mass fraction. 

 
𝑺𝒍𝒐𝒑𝒆 (∆) =

𝒕

𝜹𝑫

 
Eq(16) 

Then the inverse of the slope gives the ratio of Spacecraft's payload mass fraction and lifetime. The 

slope parameters are found to be (∆= 12.57963±0.78692), and its inverse gives  

 𝟏

𝑺𝒍𝒐𝒑𝒆 (∆)
=

𝜹𝑫

𝒕
=  𝟎. 𝟎𝟕𝟗𝟓 

Eq(17) 

Finally, the equation for the lifetime of the Spacecraft is  

 
𝒕 =  

𝒌

𝜹𝑫

 (𝒀𝒆𝒂𝒓𝒔) 
Eq(18) 

Plotting the resultant equation shows the following results 

Figure 4 Resultant Equation for the lifetime of the Spacecraft concerning payload mass fraction (𝜹𝑫) 

7. Results and Conclusion 

This paper has established a relationship between the spacecraft payload mass fraction and its lifetime 

concerning our previous technical reports [3, 4]. The novelty of this paper is the introduction of "Spacecraft 

Payload Mass Fraction," which measures the ratio of payload and dry or gross mass. In addition to this, we have 

also derived the lifetime equation of space probes based on payload mass fraction. Further, we intend to perform 

reliability analysis over Spacecraft of distinct payload mass fraction parallel to other reliability analysis over 

spacecraft mass and propellant mass fraction. Furthermore, we are currently under study to perform reliability 

analysis over inactive and retired Spacecraft concerning propellant mass and gross mass category [7-11].  
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