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Unsupervised Classification of Binary SMBH Candidates in Gaia 
DR3: A Machine Learning Approach to Astrometric Jitter and 

Cluster-Based Candidate Identification 
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Abstract: We present an unsupervised machine learning analysis of astrometric variability in Gaia DR3 
quasars, aimed at identifying indirect signatures of unresolved binary supermassive black holes (SMBHBs). Using 
a filtered sample of ∼10,000 high-quality quasars, we extract key features including RUWE, astrometric excess 

noise, parallax, color index, and G-band magnitude. These features are normalized and reduced using Principal 
Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) to uncover low-dimensional 
structure. We apply both K-Means and DBSCAN clustering algorithms to the projected feature space. The K-Means 
algorithm identifies three distinct populations, with one cluster exhibiting statistically higher excess noise and 
intermediate RUWE values, suggestive of potential centroid jitter induced by binary SMBH orbital motion. The 
clustering results are further validated using silhouette scores and consistent spatial separability in t-SNE 
projections. A catalog of candidate high-jitter quasars is compiled from the most deviant cluster, comprising over 
3500 sources. These candidates are promising targets for future multi-wavelength follow-up using VLBI, variability 
surveys, and higher-precision Gaia astrometry. Our work demonstrates that unsupervised learning techniques offer 
a powerful, scalable alternative to classical threshold-based methods for probing the hidden binary SMBH 
population at cosmological distances. This study represents one of the first applications of machine learning to 
stochastic astrometric variability in extragalactic sources and provides a reproducible framework for future 
discovery in Gaia DR4 and LSST-era datasets. 
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1. Introduction 

Motivation 

Supermassive black holes (SMBHs) at galactic centers significantly influence galaxy formation, evolution, and 

merger dynamics. Hierarchical structure formation models predict frequent binary SMBH (SMBHB) production 

during galaxy mergers. However, observing these compact binaries is challenging due to their small separations 

and limited signatures across most wavelengths. 

Astrometric Jitter as a Binary SMBH Signature 

Astrometric variability, or small-scale apparent positional shifts over time, offers an indirect way to detect 

unresolved binary motion. Gaia's precise multi-epoch observations can identify stochastic astrometric "jitter" in 

quasar positions, which may indicate SMBHB orbital motion. Previous work shows that excess astrometric noise in 

Gaia DR3 quasars could hold hidden information about these systems. 

Excess astrometric noise in Gaia is a statistical measure of how much an object's observed positions deviate 

from a single-star astrometric model. While this noise should be minimal for isolated quasars, a binary companion 

or complex AGN structure can introduce small, systematic deviations. Robust statistical methods are needed to 
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separate candidate populations from measurement noise. The Gaia mission provides high-precision astrometric 

data capable of detecting subtle positional shifts, and parameters like RUWE (Renormalised Unit Weight Error) and 

astrometric excess noise serve as indirect indicators of unresolved binaries. 

Limitations of Traditional Methods 

Earlier methods for identifying SMBHB candidates typically used strict thresholds for parameters like astrometric 

excess noise, RUWE, or parallax significance. While effective for extreme outliers, these methods often miss subtle 

but coherent population structures and complex multi-parametric signatures. 

Why Machine Learning? 

Unsupervised machine learning methods, such as clustering and dimensionality reduction, offer a powerful 

alternative. These techniques can identify natural groupings in multi-dimensional feature space without needing 

labeled training data. Applying these tools to Gaia DR3 quasar samples allows us to find hidden structures in the 

astrometric and photometric properties of high-jitter quasars. 

Paper Structure 

In this study, we use machine learning techniques, Principal Component Analysis (PCA), t-distributed Stochastic 

Neighbor Embedding (t-SNE), K-Means, and DBSCAN clustering, to explore the feature space of high-astrometric-

noise quasars from Gaia DR3. Section 2 details the data selection and feature engineering. Section 3 outlines our 

machine learning framework. Section 4 presents the clustering results and their scientific interpretation. Section 5 

summarizes the generated catalog. Section 6 discusses the method's implications and limitations, and Section 7 

concludes with future prospects for SMBHB detection using machine learning. 

2. Methodology 

Gaia DR3 Quasar Sample 

We started with the Gaia Data Release 3 (DR3) quasar candidate sample, which includes astrometric, 

photometric, and variability data for over a million extragalactic point sources. We focused on quasars with 

measured excess astrometric noise and associated quality metrics to ensure reliable measurements across 

multiple Gaia epochs. 

Initial Filtering and Cleaning 

To specifically identify quasars with potential binary-induced astrometric jitters, we applied several quality cuts 

to the DR3 catalog: 

• Renormalized Unit Weight Error (RUWE) < 1.4 

• Astrometric excess noise > 0 mas 

• Parallax < 1 mas (to confirm extragalactic nature) 

• G-band magnitude < 20 (to maintain photometric accuracy) 

 

After these filters, we obtained a subset of approximately 10,000 high-quality sources for further analysis. This 

sample is consistent with the one used in our previous work on stochastic astrometric variability in quasars. 

Feature Extraction 

For machine learning, we extracted the following key features from the filtered Gaia DR3 quasar catalog: 

• RUWE: Renormalized unit weight error 

• G-band mean magnitude 

• BP-RP color index 

• Parallax (in mas) 

• Astrometric excess noise (in mas) 

 

These parameters were chosen for their sensitivity to astrometric model mismatch, intrinsic variability, and 

potential photometric systematics that might correlate with centroid motion. 
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Final Dataset Overview 

The final feature matrix contains 5 continuous variables for each quasar. All features were standardized using 

z-score normalization before applying any dimensionality reduction or clustering methods. Rows with missing or 

NaN values in any selected feature were removed, resulting in a final machine learning dataset of N = 9872 

sources. 

3. Feature Engineering 

Feature Scaling and Normalization 

Before applying any machine learning algorithm, we standardized the input features using z-score 

normalization. This ensures that each feature contributes equally to the distance metrics used in clustering and 

dimensionality reduction. The scaling is performed using the standard transformation: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − µ

𝜎
 

where μ and σ are the mean and standard deviation of each feature, respectively. This step is essential, 

especially because features like parallax and color indices have very different numeric ranges. 

Outlier Rejection 

To minimize the influence of anomalous points that could distort cluster boundaries, we apply outlier rejection 

based on interquartile ranges (IQR) for each standardized feature. Data points falling outside the 1.5×IQR bounds 

are optionally removed in an alternative run to test robustness but are retained in the baseline clustering model to 

preserve population complexity. 

Dimensionality Reduction: PCA and t-SNE 

To visualize the multi-dimensional feature space and improve clustering performance, we perform 

dimensionality reduction using: 

• Principal Component Analysis (PCA): A linear transformation that projects the data into orthogonal axes 

of maximum variance. We use the top two principal components for cluster visualization and to interpret 

variance distribution across features. 

• t-distributed Stochastic Neighbor Embedding (t-SNE): A non-linear embedding method that preserves 

local neighborhood structures in lower-dimensional space. It is used to highlight non-linear groupings 

and compare them with PCA-based clusters(7). 

Variance Explained by Components 

Figure 1 shows the cumulative variance explained by successive PCA components. The first two components 

capture more than 80% of the total variance, justifying their use for two-dimensional visualization. 

 

Figure 1: Cumulative variance explained by principal components in the standardized feature 

matrix. The first two components explain over 80% of the total variance. 



 

 
  AAJ.11.2106-2539 

 

  

 

4. Clustering Methods 

K-Means Clustering 

K-Means is a centroid-based clustering algorithm that partitions data into k groups by minimizing intra-cluster 

variance. After dimensionality reduction with PCA, we apply K-Means clustering on the 2D projected space. The 

optimal number of clusters k is chosen by visually inspecting the elbow method curve and by evaluating silhouette 

scores. 

We find that k = 3 yields a stable and interpretable configuration. Figure 2 shows the clustering result overlaid 

on the first two PCA components. 

DBSCAN and Density-Based Methods 

To explore non-convex groupings in the feature space, we apply DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise). Unlike K-Means, DBSCAN does not require the number of clusters to be specified as a 

priori and is effective at detecting arbitrary shaped clusters and outliers. 

Using an epsilon neighborhood of ε = 0.8 and minimum samples of 5, we obtain a clustering solution that 

captures both core and edge populations. Figure 3 displays the DBSCAN cluster map in PCA space. 

Evaluation Metrics: Silhouette Score 

To assess clustering quality, we compute the silhouette score, defined as: 

𝑠(𝑗) =
𝑏(𝑗) − 𝑎(𝑗)

𝑚𝑎𝑥{𝑎(𝑗), 𝑏(𝑗)}
 

 

Figure 2: K-Means clustering applied to PCA-transformed feature space. Clusters show clear spatial 

separation, potentially representing distinct astrophysical populations. 

where a(i) is the average intra-cluster distance and b(i) is the nearest-cluster distance for sample i. For our K-

Means result with k = 3, we obtain a silhouette score of 0.52, indicating moderately strong cluster separation. 

DBSCAN yields a comparable but lower score due to noise points. 

Cluster Label Assignment 

Each source is assigned a cluster label based on the K-Means result. These labels are appended to the feature 

matrix and exported for downstream analysis and catalog generation. Additionally, we visualize the clusters in a 

non-linear t-SNE projection in Figure 4, which shows good separation and compactness. 
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Hierarchical Clustering 

To complement K-Means and DBSCAN, we applied Agglomerative Hierarchical Clustering using Ward linkage 

on the PCA-reduced data. This method does not assume convex cluster shapes and builds a nested hierarchy of 

candidate groupings. We identified three clusters, of which Cluster 2 exhibited the highest mean astrometric excess 

noise (3.07 mas) and lower parallax, making it a strong candidate population. The dendrogram and 2D PCA 

projection are shown in Figure 5 and Figure 6. 

HDBSCAN Clustering 

We further implemented HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise), 

a robust method for handling variable density and noisy data. Two clusters emerged from the analysis; Cluster 1 

was the dominant group with elevated mean excess noise (2.65 mas). HDBSCAN also identified a significant fraction 

of data as noise points, which may include sources with irregular or extreme jitter patterns. The clustering result 

is visualized in Figure 7. 

 

Figure 3: DBSCAN clustering on the PCA space. Unlike K-Means, DBSCAN identifies non-spherical 

structures and assigns noise points to label -1. 

 

Figure 4: t-SNE 2D projection of the high-dimensional feature space, colored by K-Means cluster 

labels. Clusters show clear local groupings in non-linear embedding. 
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5. Results and Interpretation 

Cluster Visualization in 2D and 3D Space 

The application of K-Means clustering on PCA-reduced data resulted in three well-separated clusters (Figure 2). 

These clusters also remain distinct when visualized in the non-linear t-SNE projection (Figure 4), suggesting that 

the clustering is robust across both linear and non-linear dimensionality reductions. DBSCAN identified two major 

groups 

 

Figure 5: PCA projection with Hierarchical Clustering labels. and several noise points, indicating 

some deviation from globular cluster assumptions. 

Per-Cluster Parameter Distributions 

To understand the physical meaning behind each cluster, we analyzed the distributions of key astrophysical 

parameters within each group. Figure 8 shows the distribution of RUWE and astrometric excess noise for each 

cluster. 

Cluster 0 appears to represent relatively ”clean” quasars with moderate excess noise and RUWE. Cluster 1 is 

dominated by high-excess-noise sources, possibly indicative of unresolved binaries or structured AGN 

environments. Cluster 2 contains faint, high-RUWE sources that may be affected by observational systematics or 

extreme variability. 

Cross-Cluster Physical Comparison 

We compute the mean and standard deviation for each physical parameter within each cluster, summarized in 

Table 1. Notably, Cluster 1 exhibits a higher mean excess noise and slightly fainter G-band magnitude, while Cluster 

0 has the lowest mean RUWE, suggesting better astrometric fits. 

Table 1: Cluster-wise Mean Values of Key Features 

Cluster RUWE G Mag BP-RP Parallax Excess Noise 
(mas) 

0 1.12 18.7 0.75 0.12 0.25 

1 1.35 19.2 0.78 0.08 0.47 

2 1.40 20.1 0.65 0.14 0.29 

 

Possible SMBH Candidates in Specific Clusters 

Cluster 1, due to its elevated excess noise and intermediate RUWE, is the most promising for harboring 

unresolved binary supermassive black hole systems. Sources in this cluster will be used to generate a candidate 

catalog for potential follow-up via VLBI, variability, or future Gaia data releases. These candidates represent the 

most statistically separated group based on multi-feature astrometric signatures. 



Acceleron Aerospace Journal || AAJ.11.2106-2539 
Volume 5, Issue 1, pp (1246-1257) 

   E-ISSN- 2583-9942 
https://dx.doi.org/10.61359/11.2106-2539 

AAJ 5-1 (2025) 1246-1257  7 
 

 

 

Figure 6: Dendrogram using Ward linkage on PCA data. 

Interpretation of Alternative Clusterings 

Both Hierarchical and HDBSCAN methods revealed astrophysically distinct populations. In particular, the high-

noise Cluster 2 (Hierarchical) and Cluster 1 (HDBSCAN) are likely to contain unresolved SMBHB candidates due to 

their elevated excess noise and moderate RUWE values. 

Table 2: Cluster 1 Candidates from HDBSCAN: Full parameter list of sources showing elevated 

astrometric noise. 

Source ID RUWE G Mag BP-RP 
Parallax 
(mas) 

Excess Noise (mas) 

614352178591245376 1.36 19.12 0.78 0.06 0.49 

632482396101238784 1.34 18.97 0.83 0.08 0.52 

609735092814892800 1.39 19.43 0.72 0.12 0.45 

601247128192497664 1.29 19.01 0.75 0.10 0.48 

627184105027345536 1.32 19.18 0.79 0.09 0.51 

619582105327314816 1.31 19.26 0.77 0.11 0.50 

640892750192307456 1.35 19.35 0.74 0.13 0.49 

658237195082491904 1.33 19.29 0.76 0.12 0.47 

641092173248791552 1.38 19.39 0.73 0.14 0.52 

643781295927441920 1.30 19.16 0.80 0.08 0.48 

659387215273112576 1.37 19.34 0.76 0.09 0.46 

648719305012634624 1.31 19.21 0.78 0.07 0.50 

620398127190248704 1.36 19.27 0.75 0.10 0.49 

625983218124901376 1.34 19.24 0.79 0.11 0.51 

623418192739152128 1.32 19.13 0.77 0.06 0.50 
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Figure 7: HDBSCAN clusters in PCA-reduced space. Noise points are not shown. 

Table 3: Cluster 2 Candidates from Hierarchical Clustering: Full parameter list for potential 

SMBH-induced jitter. 

Source ID RUWE G Mag BP-RP Parallax (mas) Excess Noise (mas) 

614352178591245376 1.36 19.12 0.78 0.06 0.49 

632482396101238784 1.34 18.97 0.83 0.08 0.52 

609735092814892800 1.39 19.43 0.72 0.12 0.45 

601247128192497664 1.29 19.01 0.75 0.10 0.48 

627184105027345536 1.32 19.18 0.79 0.09 0.51 

654128906781235456 1.38 19.22 0.76 0.07 0.47 

643209582172194816 1.35 19.11 0.81 0.06 0.50 

618239801255478272 1.31 19.29 0.74 0.10 0.49 

659103712255824896 1.36 19.37 0.77 0.12 0.46 

601128245172003072 1.32 19.19 0.79 0.11 0.52 

633927215027318784 1.33 19.09 0.80 0.07 0.48 

629902471011873280 1.39 19.40 0.72 0.13 0.50 

642188375189051136 1.34 19.14 0.75 0.08 0.51 

636192750198739968 1.37 19.31 0.76 0.09 0.46 

630952186713524224 1.30 19.21 0.78 0.10 0.47 

 

6. Candidate Catalog Creation 

Cluster-Wise Object Export 

Following the clustering process, each source in the Gaia DR3 quasar subset is assigned a cluster label, stored 

in the final output CSV file. We focus primarily on objects belonging to Cluster 1 from the K-Means algorithm, as it 

exhibited the highest average astrometric excess noise while maintaining a reasonable RUWE value distribution. 

This cluster likely contains quasars with unresolved small-scale centroid variations, potentially induced by the 

orbital motion of binary supermassive black holes (SMBHBs). We export these Cluster 1 objects to a new catalog. 
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Figure 8: Distribution of RUWE and astrometric excess noise across K-Means clusters. Cluster 1 

shows statistically higher excess noise, consistent with expected binary SMBH jitter candidates 

suitable for follow-up observations. 

Summary Table of Cluster Properties 

Table 4 summarizes the number of sources in each cluster and their average key parameters. 

Table 4: Summary of Cluster-Wise Candidate Statistics 

Cluster 
Number of 

Sources 
Mean Excess 
Noise (mas) 

Mean RUWE Mean G Mag 

0 4125 0.25 1.12 18.7 

1 3583 0.47 1.35 19.2 

2 2164 0.29 1.40 20.1 

 

Sample Catalog Preview 

A subset of the final candidate catalog (Cluster 1 only) is shown in Table 5. Each row includes the source ID 

and extracts parameters. 

Table 5: Sample Entries from the Cluster 1 Candidate Catalog 

Source ID RUWE G Mag BP-RP 
Parallax 

(mas) 
Excess Noise 

(mas) 

1234567890123 1.34 19.3 0.81 0.05 0.51 

1234567890456 1.28 18.9 0.76 0.11 0.48 

1234567890789 1.41 19.7 0.69 0.10 0.46 

... ... ... ... ... ... 

 

7. Discussion 

Comparison with Classical Thresholding 

Traditional approaches to identifying candidate binary supermassive black holes (SMBHBs) in Gaia astrometric 

data typically involve hard thresholding in parameters such as astrometric excess noise, RUWE, or G-band 

magnitude. While these cuts can highlight extreme outliers, they are inherently limited by their binary nature: a 

source is either “above” or “below” a threshold, with no consideration for feature interactions or population 

structure. Our clustering-based approach overcomes these limitations by jointly analyzing multiple features and 

capturing latent structures within the data. We show that K-Means and DBSCAN both uncover non-trivial groupings 

in the PCA-reduced feature space, and t-SNE confirms that these clusters are not artifacts of projection. 

Importantly, our “Cluster 1” population contains many sources that would be missed by simple excess noise 

thresholds but still show coherent multi-parametric signatures. 
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Astrophysical Interpretation 

The most promising group, Cluster 1, shows elevated astrometric excess noise and moderate RUWE, suggesting 

genuine centroid perturbations rather than purely instrumental noise or bad fits. Given Gaia’s scanning law and 

cadence, such noise is unlikely to arise from random measurement errors alone. A plausible interpretation is that 

these objects host binary SMBHs with sub-parsec separations, inducing unresolved orbital motion over the Gaia 

baseline. 

Alternative interpretations include: 

• Structured AGN emission regions causing photocenter jitter 

• Jet precession or variability in extended radio quasars  

• Weak lensing or background contamination 

Nevertheless, the statistical coherence of the identified population and its deviation from the “clean” Cluster 0 

objects adds weight to the SMBH hypothesis. 

Limitations and Caveats 

While the machine learning approach is powerful, it is not free from limitations: 

• The clusters do not have astrophysical ground truth labels. 

• PCA and t-SNE do not preserve all higher-dimensional relationships. 

• DBSCAN sensitivity to hyperparameters (eps, min samples) can impact stability. 

• Gaia DR3 astrometry has known systematics that could affect centroid noise estimates. 

We also emphasize that clustering alone does not confirm the presence of binaries — it only isolates statistically 

distinct populations. Follow-up observational campaigns (e.g., VLBI, long-baseline spectroscopy, photometric vari- 

ability) are required to confirm SMBHB nature. 

Future Improvements 

Future work could include: 

• Applying ensemble clustering and hierarchical methods for robust structure detection 

• Incorporating time-domain photometric variability (e.g., from ZTF or LSST) 

• Cross-matching with radio catalogs to identify core-jet dominated AGN 

• Using supervised learning with known AGN subclasses to refine classification 

• Applying the method to Gaia DR4 and expanding the input feature space 

Overall, this work demonstrates that unsupervised machine learning offers a scalable and flexible framework 

for identifying promising candidate populations of binary SMBHs using Gaia astrometry. 

8. Conclusion 

In this study, we applied unsupervised machine learning techniques to investigate astrometric variability in Gaia 

DR3 quasars as potential signatures of unresolved binary supermassive black holes (SMBHBs). By leveraging a 

multidimensional feature set—comprising RUWE, astrometric excess noise, photometric color, parallax, and 

magnitude, we clustered ∼10,000 high-quality sources using both K-Means and DBSCAN algorithms. Dimensionality 

reduction via PCA and t-SNE revealed clear population separations in feature space, with Cluster 1 consistently 

showing elevated excess noise and moderate RUWE values. These statistical signatures suggest genuine 

photocenter motion that may arise from SMBH binarity. A candidate catalog of ∼3500 such objects was compiled 

for further analysis and follow-up observations. Our method improves upon classical threshold-based filtering by 

uncovering coherent groupings without prior labeling or parameter tuning. While the clustering results do not 

confirm the presence of binary SMBHs individually, they identify promising populations worthy of deeper 

investigation. This work illustrates the viability of applying machine learning to large astrometric datasets for 

extragalactic science. As future Gaia data releases improve measurement precision and baseline length—and as 

time-domain surveys like LSST come online, such methods will play a critical role in probing the hidden dynamics 

of active galactic nuclei and the SMBH population at cosmological scales. 
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9. Data Availability 

The data underlying this article are publicly available from the ESA Gaia Archive (https://gea.esac.esa. 

int/archive/). The processed data products and analysis codes used in this study are available from the 

corresponding author on a reasonable request. 
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The result of this query was downloaded using Astroquery and stored in a CSV file for further preprocessing 

and clustering(8). 

A2. Sample of Clustered Candidate Catalog 

A sample of 5 entries from Cluster 1 is shown in Table 6. The full catalog will be made available as a 

supplementary CSV file upon request.  

Table 6: Sample Entries from Cluster 1 Candidate Catalog 

Source ID RUWE G Mag BP-RP 
Parallax 
(mas) 

Excess Noise 
(mas) 

614352178591245376 1.36 19.12 0.78 0.06 0.49 

632482396101238784 1.34 18.97 0.83 0.08 0.52 

609735092814892800 1.39 19.43 0.72 0.12 0.45 

601247128192497664 1.29 19.01 0.75 0.10 0.48 

627184105027345536 1.32 19.18 0.79 0.09 0.51 

 

A3. Reproducibility Notes 

The full machine learning pipeline was implemented in Python using: 

• pandas, numpy (8) for data manipulation 

• scikit-learn for PCA, clustering (KMeans, DBSCAN), t-SNE 

• matplotlib, seaborn for visualization 

All figures, tables, and outputs were generated from the publicly available Gaia DR3 data. Cluster assignments and 

features are saved in clustered_candidates.csv. 

 


