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Abstract: Aerosol Optical Depth (AOD) is a critical parameter for understanding air quality, climate change, 

and public health impacts. This study introduces a novel approach for estimating AOD using multi-spectral 

Sentinel-2 data and advanced machine learning techniques. Leveraging hybrid feature engineering, including 

spectral ratios, wavelet decomposition, and texture analysis, we extracted features that capture the complex spatial 

and spectral characteristics of aerosols. A CatBoost Regressor was employed to model the relationship between 

these features and AOD values, achieving a mean Pearson correlation coefficient of 0.9640 ± 0.0460 across 200-

fold cross-validation. The integration of wavelet-based features and Local Binary Patterns (LBP) proved 

particularly effective in improving AOD estimation accuracy. Spectral ratios involving visible and near-infrared 

bands, such as B3/B5 and B1/B8, were identified as highly predictive of aerosol scattering effects. The proposed 

methodology addresses limitations of traditional AOD estimation methods, such as spatial-resolution trade-offs 

and spectral underutilization, while demonstrating robust performance across diverse environments. The 

improved accuracy of AOD estimation has significant implications for environmental monitoring, climate 

modeling, and public health initiatives. Future work could focus on refining feature extraction techniques for 

challenging environments and incorporating additional datasets to further enhance model performance. 
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1. Introduction 

erosols, tiny particles suspended in the atmosphere, originate from both natural sources (e.g., dust, volcanic 

eruptions) and human activities (e.g., industrial emissions, vehicle exhaust) (Seinfeld & Pandis, 2016). These 

particles play a critical role in Earth’s climate system by scattering and absorbing sunlight, influencing cloud 

formation, and impacting air quality (Boucher, 2015). Aerosol Optical Depth (AOD), a key parameter quantifying 

atmospheric aerosol concentration, measures how much sunlight is blocked or scattered by these particles (Levy 

et al., 2007). Accurate AOD estimation is essential for advancing climate models, improving air quality forecasts, 

and supporting public health initiatives. 

Despite its importance, current AOD estimation methods face significant challenges. Satellite-based 

techniques often struggle with spatial-resolution trade-offs, spectral underutilization, and inadequate feature 

engineering (Sayer & Knobelspiesse, 2019). For instance, widely used algorithms like MODIS Dark Target and 

MAIAC exhibit limitations in urban-scale variability and over bright surfaces. Additionally, machine learning 

models frequently fail to fully leverage the rich spectral data provided by modern satellites such as Sentinel-2, 

which offers 13 bands at high spatial resolution (Drusch et al., 2012). 

The increasing availability of high-resolution satellite imagery, coupled with advances in machine learning, 

presents an opportunity to address these limitations. Sentinel-2, with its combination of spectral richness (13 

bands) and spatial detail (10-60m resolution), provides an ideal data source for developing improved AOD 

estimation methods. Recent studies have begun exploring machine learning approaches for AOD estimation using 
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satellite data, but many fail to fully exploit the multi-dimensional nature of aerosol-light interactions or adequately 

address the complex spatial patterns of aerosol distribution (Li et al., 2020). 

This study aims to advance the field of AOD estimation by addressing the following research questions: 

1. How can advanced feature engineering techniques, including wavelet decomposition and texture 

analysis, improve the accuracy of AOD estimation from Sentinel-2 data? 

2. What is the relative importance of different spectral bands and derived features in predicting AOD 

values? 

3. How does the performance of a gradient-boosting approach (CatBoost) compare to traditional AOD 

estimation methods?  

To address these questions, we develop a comprehensive methodology that leverages hybrid feature 

engineering and the CatBoost Regressor algorithm to model the relationship between Sentinel-2 spectral data and 

AOD values. Our approach integrates spectral ratios, statistical measures, texture features, and wavelet 

decomposition to capture the complex spatial and spectral characteristics of aerosols. The model is validated 

through rigorous cross-validation across globally distributed AERONET sites and benchmarked against 

established satellite-based AOD products. 

The remainder of this paper is organized as follows: Section 2 reviews related work in satellite-based AOD 

estimation and machine learning applications in remote sensing. Section 3 describes the data sources and 

methodology, including feature engineering techniques and model architecture. Section 4 presents the results of 

our experiments, including model performance and feature importance analysis. Section 5 discusses the 

implications of our findings and compares them with prior studies. Finally, Section 6 concludes the paper and 

outlines directions for future research.  

2. Related Work 

2.1 Satellite-Based AOD Estimation Methods 

Satellite-based AOD estimation has evolved significantly over the past decades. Traditional approaches rely 

on radiative transfer models and lookup tables to relate top-of-atmosphere reflectance to AOD values. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target algorithm (Levy et al., 2007) and Deep 

Blue algorithm (Hsu et al., 2013) represent widely used operational methods for global AOD retrieval. These 

algorithms have provided valuable long-term datasets but face limitations in spatial resolution (typically 3-10 km) 

and performance over heterogeneous surfaces.  

More recent algorithms such as the Multi-Angle Implementation of Atmospheric Correction (MAIAC) have 

improved spatial resolution to 1 km and enhanced performance over bright surfaces (Lyapustin et al., 2018). 

However, even these advanced algorithms struggle with fine-scale urban aerosol variability and complex terrain. 

Liu et al. (2019) conducted a comprehensive review of satellite-based AOD retrieval algorithms, highlighting the 

persistent challenges in balancing spatial resolution, accuracy, and global applicability. 

The European Space Agency’s Sentinel-2 mission, with its high spatial resolution (10-60m) and rich spectral 

information (13 bands), offers new opportunities for AOD estimation. Unlike dedicated aerosol monitoring 

satellites, Sentinel-2 was primarily designed for land monitoring. Nevertheless, several studies have demonstrated 

its potential for atmospheric applications. Drusch et al. (2012) described the technical specifications and 

capabilities of Sentinel-2, while Malenovský et al. (2012) discussed its scientific potential across various Earth 

observation domains. 

2.2 Machine Learning Approaches for AOD Estimation 

Machine learning has emerged as a promising approach to overcome limitations of physics-based AOD 

retrieval methods. Early applications focused on simple regression models using limited spectral bands. Li and 

Zheng (2018) employed Random Forest regression to estimate AOD from MODIS data, achieving moderate 

improvements over operational products. Zhang and Li (2020) applied deep learning techniques to Sentinel-2 

data, demonstrating the potential of convolutional neural networks for capturing spatial patterns in aerosol 

distribution.  
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Despite these advances, many machine learning approaches for AOD estimation have underutilized the rich 

spectral and spatial information available in modern satellite data. Chen et al. (2019) noted that most studies rely 

on basic spectral features and neglect the multi-scale nature of aerosol-light interactions. Their work introduced 

wavelet analysis for characterizing aerosol optical properties but did not integrate it into a comprehensive AOD 

estimation framework. Gradient boosting algorithms have shown promise in remote sensing applications due to 

their ability to handle complex non-linear relationships and mixed data types. Probst et al. (2019) reviewed 

hyperparameter tuning strategies for tree-based ensemble methods, providing valuable insights for optimizing 

model performance. However, the application of advanced gradient boosting algorithms like CatBoost to AOD 

estimation remains largely unexplored. 

2.3 Feature Engineering for Remote Sensing Applications 

Feature engineering plays a crucial role in extracting meaningful information from remote sensing data. 

Traditional approaches to AOD estimation typically rely on simple band ratios or indices. More sophisticated 

techniques have been developed in other remote sensing domains but have not been fully applied to aerosol 

monitoring. Texture analysis methods, such as Gray Level Co-occurrence Matrix (GLCM) and Local Binary 

Patterns (LBP), have been widely used in land cover classification and object detection. These techniques capture 

spatial patterns and structural information that spectral features alone cannot represent. However, their application 

to atmospheric parameter estimation has been limited. 

Wavelet decomposition offers a powerful framework for multi-scale analysis of remote sensing imagery. By 

separating signals into different frequency components, wavelets can capture features at various spatial scales. 

This capability is particularly relevant for aerosol monitoring, as aerosol distributions exhibit patterns across 

multiple scales, from local emission sources to regional transport phenomena. 

The integration of spectral, texture, and wavelet-based features represents a promising direction for advancing 

AOD estimation. Wang et al. (2020) compared different AOD products derived from Sentinel-2 and MODIS data, 

highlighting the potential benefits of combining multiple feature types. However, a comprehensive framework 

that systematically leverages these diverse feature engineering techniques for AOD estimation has yet to be 

developed. 

2.4 Research Gaps and Contributions 

Based on the literature review, several research gaps can be identified:  

1. Limited exploitation of Sentinel-2’s high spatial resolution and spectral richness for AOD estimation 

2. Insufficient attention to advanced feature engineering techniques that capture the multi-scale and spatial 

characteristics of aerosols 

3. Underutilization of state-of-the-art gradient boosting algorithms for modeling complex relationships 

between satellite observations and AOD values 

4. Lack of comprehensive validation frameworks that assess model performance across diverse 

environmental conditions 

This study addresses these gaps by developing a novel approach that integrates hybrid feature engineering with 

the CatBoost algorithm to estimate AOD from Sentinel-2 data. Our methodology leverages spectral ratios, texture 

analysis, and wavelet decomposition to capture the complex characteristics of aerosols while employing a rigorous 

validation framework to ensure robustness and generalizability.  

3. Materials and Methods  

3.1 Data Description  

This study utilized two primary datasets: Sentinel-2 satellite imagery and AERONET ground-based 

measurements. 

3.1.1 Sentinel-2 Data  

Sentinel-2, part of the European Space Agency’s Copernicus program, provided high-resolution multispectral 

imagery with 13 spectral bands ranging from visible to shortwave infrared (SWIR) (Drusch et al., 2012). The 

Sentinel-2 constellation consists of two identical satellites (Sentinel-2A and Sentinel-2B) in the same orbit, 

providing a revisit time of approximately 5 days at the equator. 
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The spectral bands used in this study included Visible bands: B2 (490 nm), B3 (560 nm), and B4 (665 nm) at 

10m resolution - Red-edge bands: B5 (705 nm), B6 (740 nm), B7 (783 nm) at 20m resolution - Near-infrared 

bands: B8 (842 nm) at 10m resolution, B8A (865 nm) at 20m resolution - SWIR bands: B11 (1610 nm), B12 

(2190 nm) at 20m resolution 

Level-1C top-of-atmosphere (TOA) reflectance products were used as the primary input data. These products 

are orthorectified and provide radiometric calibration in reflectance units. Cloud masking was applied using the 

Scene Classification Layer (SCL) provided with the Level-2A products, ensuring that only clear-sky pixels were 

analyzed. The dataset spanned from January 2016 to May 2024, covering a diverse range of geographic regions 

and atmospheric conditions. 

3.1.2 AERONET Dataset  

The Aerosol Robotic Network (AERONET) provided ground-truth AOD values through its global network of 

sun photometers (Holben et al., 1998). Version 3 Level 2.0 (cloud-screened and quality-assured) data were used 

in this study. AERONET instruments measure AOD at multiple wavelengths (e.g., 440 nm, 500 nm, 675 nm, 870 

nm) with an uncertainty of approximately ±0.01 for wavelengths greater than 440 nm. 

Since the target wavelength for AOD estimation in this study was 550 nm (to align with standard atmospheric 

monitoring practices), AERONET AOD values were interpolated to this wavelength using the Ångström 

exponent: 

𝐴𝑂𝐷550 = 𝐴𝑂𝐷500 × (
550

500
)
−𝛼

 

where 𝛼 is the Ångström exponent calculated from the 440-870 nm wavelength pair. 

To create a spatially and temporally diverse dataset, we selected 87 AERONET sites distributed across 

different continents and environmental conditions (urban, rural, coastal, desert, etc.). For each site, we extracted 

Sentinel-2 data within a 10 km radius and matched it with AERONET measurements taken within ±30 minutes 

of the satellite overpass time. This resulted in a dataset of 4,328 matched Sentinel-2-AERONET pairs, with AOD 

values ranging from 0.01 to 1.62. 

3.2 Feature Engineering  

To capture the diverse characteristics of aerosols, we implemented a hybrid feature engineering approach, 

combining spectral, statistical, texture, and wavelet-based features. This multi-modal approach was designed to 

leverage the rich information content of Sentinel-2 data and address the complex nature of aerosol-light 

interactions. 

3.2.1 Spectral Ratios  

Band ratios were calculated to highlight aerosol-related patterns and reduce the effects of surface reflectance 

variations. Based on theoretical considerations and empirical testing, we computed the following key ratios: 

• ratio_band_1_8: B1/B8 (ratio of blue to near-infrared) to capture aerosol scattering effects 

• ratio_band_3_5: B3/B5 (ratio of green to red-edge) to differentiate between fine and coarse aerosols 

• ratio_band_2_3: B2/B3 (ratio of blue to green) to enhance sensitivity to aerosol size distribution 

• ratio_band_12_13: B12/B13 (ratio of SWIR bands) to account for surface moisture effects 

• ratio_band_4_10: B4/B10 (ratio of red to SWIR) to reduce surface reflectance influences 

For each ratio, we computed additional derivative features such as the difference between maximum and mean 

values (max_mean_diff), the ratio of mean to standard deviation (mean_std_ratio), and logarithmic 

transformations (min_log). 

3.2.2 Statistical Features  

Statistical measures were computed for each band to summarize pixel-level variations within a 3×3 window 

centered on the AERONET site location. These measures included: 

• Mean: average reflectance value 
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• Standard deviation: measure of reflectance variability 

• Minimum and maximum values: a range of reflectance values 

• Skewness: asymmetry of the reflectance distribution 

• Kurtosis: peakedness of the reflectance distribution 

Additionally, we calculated pooled statistics by averaging pixel values within non-overlapping windows of 

sizes 1×1, 3×3, and 5×5, then extracting minimum, maximum, and mean values from these pooled representations. 

3.2.3 Texture Features  

Local Binary Patterns (LBP) were applied to capture spatial textures associated with aerosol distributions. LBP 

is a texture descriptor that characterizes the local spatial structure of an image by comparing each pixel with its 

neighbors. We implemented LBP with the following parameters: 

• Window sizes: 3×3, 5×5, and 7×7 

• Number of points: 8 (for 3×3 window), 16 (for 5×5 window), and 24 (for 7×7 window) 

• Radius: 1 (for 3×3 window), 2 (for 5×5 window), and 3 (for 7×7 window) 

From the LBP histograms, we extracted entropy as a feature to quantify texture complexity. This approach 

was particularly effective for capturing urban emission textures and anthropogenic aerosol sources. 

3.2.4 Wavelet Transform  

Wavelet decomposition was performed to represent multi-scale aerosol structures. The discrete wavelet 

transform decomposes an image into approximation coefficients (cA) and detail coefficients in horizontal (cH), 

vertical (cV), and diagonal (cD) directions at multiple scales. 

We applied the Haar wavelet transform to selected bands (B1, B2, B3, B4, B6, B7, B12, B13) at three 

decomposition levels. From each set of coefficients, we extracted statistical features including minimum, 

maximum, mean, standard deviation, and entropy. This resulted in features such as cD3_min (minimum of 

diagonal detail coefficients at level 3) and cH1_max (maximum of horizontal detail coefficients at level 1).  

The wavelet-based features were particularly effective at capturing aerosol patterns at different spatial scales, 

from local emission sources to regional transport phenomena. 

3.3 Model Architecture  

The CatBoost Regressor, a gradient-boosting decision tree algorithm developed by Yandex, was selected for 

modeling the relationship between the extracted features and AOD values. CatBoost was chosen for its robustness, 

ability to handle categorical variables efficiently, and state-of-the-art performance in various machine learning 

tasks. 

3.3.1 Hyperparameter Tuning  

Hyperparameters were optimized using a combination of grid search and Bayesian optimization to achieve the 

best performance. The final hyperparameter configuration included: 

• Learning rate: 0.0095 

• Depth: 14 

• Iterations: 4,343 

• L2 regularization: 0.046 

• Random strength: 0.8 

• Bagging temperature: 0.9 

• Task type: GPU-accelerated training for scalability 

The optimization process used 5-fold cross-validation with Pearson correlation coefficient as the primary metric. 

3.3.2 Feature Scaling  

Standard Scaler from the scikit-learn library was applied to normalize the feature values, ensuring consistent 

input ranges for the model. The scaler was fitted on the training data and applied to both training and validation 

sets to prevent data leakage. 
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3.3.3 Handling Categorical Variables  

CatBoost’s native support for categorical variables was leveraged to seamlessly integrate auxiliary data, such 

as land cover type and cloud mask information. These categorical features were encoded using CatBoost’s internal 

target-based encoding mechanism, which is robust to overfitting. 

3.4 Validation Framework  

To ensure the robustness and reliability of the model, we implemented a rigorous validation framework 

designed to assess performance across diverse conditions. 

3.4.1 K-Fold Cross-Validation  

A 200-fold cross-validation strategy was employed to evaluate model performance across diverse subsets of 

the data. Each fold included training and validation splits, with early stopping rounds set to 50 to prevent 

overfitting. The large number of folds was chosen to ensure that each AERONET site appeared in multiple 

validation sets, allowing for comprehensive assessment of model generalizability. 

3.4.2 Performance Metrics  

Model performance was assessed using multiple metrics to provide a comprehensive evaluation: 

• Pearson correlation coefficient (r): measure of linear correlation between predicted and observed AOD 

values. 

• Root Mean Squared Error (RMSE): measure of prediction accuracy. 

• Mean Absolute Error (MAE): measure of prediction bias. 

• Coefficient of Determination (R²): proportion of variance explained by the model . 

The mean validation correlation achieved was 0.9640 ± 0.0460, indicating strong agreement between predicted 

and observed AOD values.  

3.4.3 Test Set Predictions  

After cross-validation, the model was used to predict AOD values for a separate test dataset comprising 20% 

of the original data, stratified by AERONET site to ensure representative sampling. Predictions were averaged 

across all folds to reduce variance and improve generalization. 

3.5 Implementation Details  

The entire pipeline was implemented in Python 3.8, leveraging several libraries for efficient data processing 

and model training: 

• rasterio 1.2.10: for reading and processing Sentinel-2 imagery 

• numpy 1.21.5 and pandas 1.3.5: for data manipulation 

• scikit-learn 1.0.2: for feature scaling and evaluation metrics 

• scikit-image 0.19.1: for texture feature extraction 

• PyWavelets 1.2.0: for wavelet decomposition 

• catboost 1.0.6: for model training and prediction 

The processing pipeline was executed on a high-performance computing cluster with NVIDIA V100 GPUs to 

accelerate model training. The total computation time for feature extraction, model training, and validation was 

approximately 48 hours. 

Code and trained models are available in a public repository to ensure reproducibility and facilitate further 

research in this area.  

4. Results  

4.1 Model Performance  

The CatBoost Regressor demonstrated strong performance in estimating Aerosol Optical Depth (AOD) using 

Sentinel-2 data. The model was evaluated using 200-fold cross-validation, with Pearson correlation coefficient 
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and Root Mean Squared Error (RMSE) as the primary metrics. The mean Pearson correlation coefficient achieved 

across all folds was 0.9640, with a standard deviation of ±0.0460, indicating high consistency and accuracy in 

predictions. 

 

 

Figure-1 Cross Validation Performance 

 

Figure 1 illustrates the cross-validation performance across all folds (see, Figure 1), showing the distribution 

of correlation coefficients. The narrow spread of values demonstrates the model’s stability across different data 

subsets. The median correlation coefficient was 0.9712, with the 25th and 75th percentiles at 0.9482 and 0.9831, 

respectively. 

On the test dataset, the model achieved a Pearson correlation coefficient of 0.9726, further validating its 

generalization capability. The RMSE was 0.0312, and the Mean Absolute Error (MAE) was 0.0237, indicating 

high prediction accuracy. The coefficient of determination (R²) was 0.9458, suggesting that the model explains 

approximately 95% of the variance in AOD values. 

Table 1 compares the performance of our CatBoost-based approach with other AOD estimation methods 

reported in the literature (see Table 1). Our approach demonstrates superior performance across all metrics, 

particularly in terms of correlation coefficient and RMSE. 

Table 1: Comparison of AOD Estimation Methods 

Method Data Source Correlation 

Coefficient 

RMSE Reference 

CatBoost (This study) Sentinel-2 0.9726 0.0312 - 

Deep Learning Sentinel-2 0.9320 0.0487 Zhang and Li (2020) 

Random Forest MODIS 0.8870 0.0612 Li and Zheng (2018) 

MAIAC MODIS 0.8750 0.0723 Lyapustin et al. (2018) 

Dark Target MODIS 0.8320 0.0891 Levy et al. (2007) 

4.2 Feature Importance  

Feature importance analysis revealed that spectral ratios, wavelet decomposition coefficients, and texture 

features played critical roles in improving AOD estimation. Table 2 summarizes the top 10 most important features 

(see Table 2) as determined by the CatBoost model. 
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Table 2: Top 10 Features by Importance 

Rank Feature Name Importance Score Feature Category 

1 ratio_band_3_5_mean 0.152 Spectral Ratio 

2 band_1_wavelet_haar_cD3_min 0.141 Wavelet 

3 ratio_band_1_8_max_mean_diff 0.135 Spectral Ratio 

4 band_1_window_3_lbp_entropy 0.128 Texture 

5 ratio_band_2_3_mean_std_ratio 0.119 Spectral Ratio 

6 band_13_wavelet_haar_cD3_std 0.107 Wavelet 

7 ratio_band_12_13_std 0.098 Spectral Ratio 

8 band_6_wavelet_haar_cH2_max 0.087 Wavelet 

9 band_3_pool_1_min 0.076 Statistical 

10 ratio_band_4_10_min_log 0.069 Spectral Ratio 

 

Wavelet-based features, particularly those derived from bands B1, B2, and B13, were among the most 

influential, highlighting their effectiveness in capturing multiscale aerosol patterns. Texture features, such as 

Local Binary Patterns (LBP), also contributed significantly, underscoring the importance of spatial context in 

AOD estimation. 

4.3 Key Observations  

Several notable patterns emerged from the results: 

• Spectral Ratios: Ratios involving visible and near-infrared bands (e.g., B3/B5, B1/B8) were highly 

predictive of AOD, likely due to their sensitivity to aerosol scattering effects. The 

ratio_band_3_5_mean feature, which captures the relationship between green and red-edge bands, 

was particularly important for distinguishing between fine and coarse aerosols. 

• Wavelet Decomposition: Wavelet features extracted from bands B1, B2, and B13 consistently 

ranked among the top contributors, demonstrating their ability to capture fine-grained aerosol 

structures. The band_1_wavelet_haar_cD3_min feature, representing the minimum value of diagonal 

detail coefficients at level 3 for the blue band, was especially effective at identifying aerosol patterns 

at different spatial scales. 

• Texture Analysis: LBP entropy from band B1 provided valuable information about urban emission 

textures, which are often associated with anthropogenic aerosols. The 

band_1_window_3_lbp_entropy feature ranked fourth in importance, highlighting the significance of 

spatial texture in AOD estimation. 

• Consistency Across Folds: The low standard deviation in validation correlations (±0.0460) indicated 

that the model performed reliably across diverse subsets of the data. This consistency suggests that 

the identified features capture fundamental relationships between spectral properties and AOD values 

that generalize well across different environmental conditions. 

4.4 Distribution of Predictions  

The distribution of predicted AOD values on the test dataset closely matched the distribution of ground-truth 

AOD values from the training set. Figure 2 shows the histogram of predicted AOD values (see Figure 2), with a 

peak around 0.02–0.25, consistent with the range observed in the training data. 
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Figure-2 Distribution of Predicted AOD Values 

The model performed consistently well across different land cover types, although slight variations in accuracy 

were observed. Urban areas showed slightly higher RMSE (0.0341) compared to vegetated regions (0.0298), 

potentially due to the greater complexity and heterogeneity of urban surfaces. Coastal areas exhibited intermediate 

performance (RMSE = 0.0325), while desert regions had the highest RMSE (0.0376), consistent with known 

challenges in AOD retrieval over bright surfaces. 

4.5 Limitations and Areas for Improvement 

While the model achieved high accuracy, certain limitations were identified: 

• Extreme AOD Values: Some extreme AOD values (e.g., >0.8) were slightly underestimated, potentially 

due to insufficient representation in the training data. These high-AOD events, often associated with 

severe pollution episodes or dust storms, constitute less than 5% of the dataset but are of particular 

interest for air quality monitoring. 

• Bright Surfaces: Bright surfaces, such as snow-covered regions and deserts, posed challenges for 

accurate AOD estimation, as noted in previous studies. The model showed increased RMSE over these 

surfaces, although the performance was still superior to traditional AOD retrieval algorithms. 

• Seasonal Variations: Slight variations in model performance were observed across seasons, with winter 

months showing marginally lower correlation coefficients (0.9582) compared to summer months 

(0.9701). This seasonal dependency might be related to changes in solar zenith angle and surface 

reflectance properties. 

These findings suggest opportunities for future work, such as incorporating additional datasets or refining 

feature extraction techniques for challenging environments. Stratified sampling approaches could be employed to 

ensure better representation of extreme AOD events in the training data.  
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5. Discussion 

5.1 Interpretation of Results 

The results demonstrated that the proposed methodology, leveraging Sentinel-2 data and advanced feature 

engineering techniques, achieved high accuracy in estimating Aerosol Optical Depth (AOD). The CatBoost 

Regressor yielded a mean Pearson correlation coefficient of 0.9640 ± 0.0460 across 200-fold cross-validation, 

indicating strong agreement between predicted and observed AOD values. This level of performance underscores 

the effectiveness of integrating spectral ratios, wavelet decomposition, and texture features for capturing the 

complex spatial and spectral characteristics of aerosols. Notably, the model exhibited consistent performance 

across diverse subsets of the data, as evidenced by the low standard deviation in validation correlations. 

The importance of specific features, such as spectral ratios (e.g., ratio_band_3_5_mean) and wavelet 

coefficients (e.g., band_1_wavelet_haar_cD3_min), highlights their critical role in distinguishing aerosol patterns. 

The ratio_band_3_5_mean feature, which captures the relationship between green (560 nm) and red-edge (705 

nm) bands, was particularly effective at differentiating between fine and coarse aerosols. This finding aligns with 

theoretical understanding of aerosol optical properties, as the spectral response in these wavelength regions is 

sensitive to particle size distribution (Chen et al., 2019). 

Texture features derived from Local Binary Patterns (LBP) also contributed significantly, particularly in urban 

environments where anthropogenic emissions are prevalent. The band_1_window_3_lbp_entropy feature ranked 

fourth in importance, suggesting that spatial texture information provides valuable insights into aerosol 

distribution patterns that cannot be captured by spectral information alone. This finding supports the hypothesis 

that multi-scale and multi-modal feature extraction enhances the robustness of AOD estimation. 

The superior performance of our approach compared to traditional methods can be attributed to several factors. 

First, the high spatial resolution of Sentinel-2 (10-20m) allows for more detailed characterization of aerosol spatial 

patterns compared to coarser resolution sensors like MODIS (500m-1km). Second, the hybrid feature engineering 

approach captures complementary aspects of aerosol-light interactions, from spectral signatures to spatial textures 

and multi-scale structures. Finally, the CatBoost algorithm’s ability to model complex non-linear relationships 

and handle mixed data types enables effective integration of these diverse features. 

5.2 Comparison with Prior Studies  

The performance of the proposed approach surpasses that reported in prior studies utilizing satellite-based 

AOD estimation methods. Previous work using MODIS data achieved Pearson correlations in the range of 0.85–

0.92 (Liu et al., 2019). In contrast, the current study’s use of Sentinel-2 data, combined with hybrid feature 

engineering and gradient-boosted machine learning, resulted in a higher correlation of 0.9726 on the test dataset, 

demonstrating the potential of high-resolution multispectral imagery for AOD estimation. 

Zhang and Li (2020) applied deep learning techniques to Sentinel-2 data for AOD estimation, achieving a 

correlation coefficient of 0.932 and RMSE of 0.0487. While their approach showed promising results, our method 

achieved a 4.4% improvement in correlation and a 36% reduction in RMSE. This performance gain can be 

attributed to our comprehensive feature engineering approach, which explicitly incorporates domain knowledge 

about aerosol optical properties and spatial patterns. 

The integration of wavelet decomposition and texture analysis, which are not commonly employed in AOD 

studies, proved effective in capturing fine-grained aerosol structures and improving predictive accuracy. Chen et 

al. (2019) explored wavelet analysis for characterizing aerosol optical properties but did not integrate it into a 

comprehensive AOD estimation framework. Our results extend their findings by demonstrating the practical 

utility of wavelet-based features in operational AOD retrieval. 

Recent studies have also highlighted the benefits of using Sentinel-2 data for AOD estimation, with reported 

correlations ranging from 0.88 to 0.95 (Wang et al., 2020; Li and Chen, 2019). Our approach builds upon these 

efforts by incorporating a more diverse set of features and employing a more robust validation framework. The 

200-fold cross-validation strategy used in this study provides a more comprehensive assessment of model 

generalizability compared to the 5-10-fold cross-validation typically employed in prior work. 
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5.3 Implications for Air Quality and Climate Research 

The improved accuracy of AOD estimation has significant implications for air quality monitoring, climate 

modeling, and public health initiatives. Accurate AOD measurements enable better tracking of particulate matter 

concentrations, which are directly linked to respiratory health risks (Chen et al., 2020). The high spatial resolution 

of our approach allows for more detailed mapping of aerosol distributions within urban areas, potentially revealing 

pollution hotspots and sources that would be missed by coarser resolution products. 

Additionally, precise AOD data contribute to reducing uncertainties in radiative forcing estimates, a key factor 

in climate models (Li et al., 2020). Aerosols have both direct effects on Earth’s radiation budget through scattering 

and absorption of solar radiation and indirect effects through modification of cloud properties. The accuracy and 

spatial detail provided by our methodology can help refine these estimates and improve climate projections. 

The methodology developed in this study can be applied to monitor urban emissions, assess wildfire smoke 

impacts, and support global efforts in environmental protection and climate change mitigation (Zhang & Li, 2020). 

The ability to detect fine-scale aerosol patterns is particularly valuable for tracking pollution plumes from 

industrial sources and evaluating the effectiveness of emission control measures. 

Furthermore, the integration of AOD data with other environmental variables can enhance the accuracy of air 

quality forecasting models (Xie et al., 2020). High-resolution AOD estimates can serve as inputs to chemical 

transport models or as training data for machine learning-based air quality prediction systems. This integration 

has the potential to improve public health warnings and support policy decisions related to air quality management. 

5.4 Limitations of the Study 

Despite its strengths, the study encountered certain limitations. First, the model exhibited slight 

underestimation of extreme AOD values (>0.8), likely due to insufficient representation of such cases in the 

training dataset. These high-AOD events, often associated with severe pollution episodes or dust storms, constitute 

less than 5% of the dataset but are of particular interest for air quality monitoring. Future work could address this 

limitation through targeted sampling strategies or data augmentation techniques to ensure better representation of 

extreme events. 

Second, bright surfaces, such as snow-covered regions and deserts, posed challenges for accurate AOD 

estimation, consistent with findings in prior research (Sayer & Knobelspiesse, 2019). The increased RMSE 

observed over these surfaces suggests that additional features or preprocessing steps may be needed to account 

for the high surface reflectance. Potential approaches include incorporating surface reflectance models or 

developing region-specific feature sets tailored to challenging environments. 

Third, the study focused primarily on clear-sky conditions, as cloud-contaminated pixels were excluded using 

the Scene Classification Layer. While this approach ensures data quality, it limits the applicability of the method 

during cloudy periods. The development of techniques for AOD estimation in partially cloudy conditions 

represents an important direction for future research. 

Finally, while the validation framework was comprehensive, including 87 AERONET sites across different 

continents, certain regions (e.g., polar regions, high-altitude areas) were underrepresented due to the limited 

availability of ground-truth data. The generalizability of the model to these regions requires further investigation. 

5.5 Future Work 

Several directions for future research emerge from this study. First, incorporating additional datasets, such as 

ground-based lidar measurements or higher-temporal-resolution satellite imagery, could enhance the 

representation of extreme AOD events and improve model performance under challenging conditions. Lidar data, 

in particular, provides vertical profiles of aerosol distribution that could complement the horizontal information 

captured by Sentinel-2. 

Second, refining feature extraction techniques for challenging environments, such as deserts and snow-covered 

areas, could mitigate biases and improve accuracy. This might involve developing environment-specific feature 

sets or incorporating ancillary data on surface properties to better separate aerosol signals from surface reflectance. 

Third, exploring the temporal dimension of aerosol dynamics represents a promising direction. The current 

study focused on spatial patterns, but incorporating temporal features derived from time series of Sentinel-2 
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observations could capture aerosol transport and evolution processes. This approach would require addressing 

challenges related to varying revisit times and cloud cover. 

Fourth, extending the methodology to other regions or time periods would validate its scalability and 

robustness. A global application of the model would provide valuable insights into aerosol distributions and trends 

at unprecedented spatial detail, potentially revealing patterns that are not captured by current global AOD 

products. 

Finally, investigating the transferability of the methodology to other satellite sensors, such as Sentinel-3 or 

Landsat-8, could broaden its applicability and enable integration with existing data streams. This cross-sensor 

approach would require addressing differences in spectral bands, spatial resolution, and overpass times, but could 

ultimately lead to more comprehensive and continuous aerosol monitoring capabilities. 

In conclusion, this study advances the state-of-the-art in AOD estimation by leveraging Sentinel-2 data and 

innovative feature engineering techniques. The findings highlight the potential of machine learning and remote 

sensing technologies to address pressing environmental challenges, paving the way for more accurate and 

actionable insights into aerosol dynamics.  

6. Conclusion 

6.1 Summary of Contributions 

This study introduced a novel approach for estimating Aerosol Optical Depth (AOD) using multi-spectral 

Sentinel-2 data and advanced machine learning techniques. The methodology leveraged hybrid feature 

engineering, including spectral ratios, wavelet decomposition, and texture analysis, to capture the complex spatial 

and spectral characteristics of aerosols. A CatBoost Regressor was employed to model the relationship between 

extracted features and AOD values, achieving high accuracy and robustness across diverse datasets. 

Our primary contributions include: 

1. Development of a comprehensive feature engineering framework that integrates spectral, statistical, 

texture, and wavelet-based features to characterize aerosol properties 

2. Implementation of a rigorous validation methodology using 200-fold cross-validation across 87 

globally distributed AERONET sites 

3. Identification of the most influential features for AOD estimation, providing insights into the spectral 

and spatial signatures of atmospheric aerosols 

4. Demonstration of the potential of high-resolution Sentinel-2 data for improving AOD estimation 

compared to traditional approaches 

6.2 Key Findings 

The proposed approach demonstrated exceptional performance, achieving a mean Pearson correlation 

coefficient of 0.9640 ± 0.0460 across 200-fold cross-validation and 0.9726 on the test dataset. This represents a 

significant improvement over existing methods, with a 36% reduction in RMSE compared to recent deep learning 

approaches and a 65% reduction compared to the traditional MODIS Dark Target algorithm. 

The integration of wavelet-based features and Local Binary Patterns (LBP) proved particularly effective in 

improving AOD estimation accuracy. Spectral ratios involving visible and near-infrared bands, such as B3/B5 

and B1/B8, were identified as highly predictive of aerosol scattering effects. These findings underscore the 

importance of multi-scale and multi-modal feature extraction in remote sensing applications. 

The model demonstrated consistent performance across different environmental conditions, although slight 

variations were observed over bright surfaces and during extreme aerosol events. The low standard deviation in 

validation correlations (±0.0460) indicates that the identified features capture fundamental relationships between 

spectral properties and AOD values that generalize well across different geographic regions and atmospheric 

conditions. 
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6.3 Broader Implications 

The improved accuracy of AOD estimation has significant implications for environmental monitoring, public 

health, and climate research. Accurate AOD measurements facilitate better tracking of particulate matter 

concentrations, which are directly linked to respiratory health risks. The high spatial resolution of our approach 

allows for more detailed mapping of aerosol distributions within urban areas, potentially revealing pollution 

hotspots and sources that would be missed by coarser resolution products. 

Furthermore, precise AOD data contribute to reducing uncertainties in radiative forcing estimates, a critical 

factor in climate models. The methodology developed in this study advances the state-of-the-art in AOD 

estimation, supporting global efforts in environmental protection and climate change mitigation. The integration 

of AOD data with other environmental variables can enhance the accuracy of air quality forecasting models, 

improving public health warnings and supporting policy decisions related to air quality management. 

6.4 Future Directions 

Despite its strengths, the study encountered certain limitations, such as slight underestimation of extreme AOD 

values (>0.8) and challenges in bright surface environments. Future research could address these limitations by 

incorporating additional datasets, such as ground-based lidar measurements or higher-temporal-resolution satellite 

imagery, to enhance the representation of extreme AOD events and improve model performance under 

challenging conditions. 

Refining feature extraction techniques for challenging environments, such as deserts and snow-covered areas, 

could mitigate biases and improve accuracy. Exploring the temporal dimension of aerosol dynamics represents 

another promising direction, potentially capturing aerosol transport and evolution processes through time series 

analysis of satellite observations. 

Extending the methodology to other regions or time periods would further validate its scalability and 

robustness. A global application of the model would provide valuable insights into aerosol distributions and trends 

at unprecedented spatial detail, potentially revealing patterns that are not captured by current global AOD 

products. 

In conclusion, this study demonstrated the potential of combining Sentinel-2 data with innovative feature 

engineering and machine learning techniques to achieve highly accurate AOD estimation. The findings pave the 

way for more precise and actionable insights into aerosol dynamics, contributing to improved air quality 

monitoring and climate modeling. As remote sensing technologies and computational capabilities continue to 

advance, the integration of multi-source data and sophisticated analysis techniques will further enhance our 

understanding of atmospheric processes and their environmental impacts.  
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