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Abstract: This report investigates the application of design thinking principles to optimize the trajectory and 

operations of a lunar lander. By considering the spacecraft as the "user" within the design thinking framework, 

we aim to identify and address critical challenges during key mission phases: Earth Escape, Orbital Insertion, 

Lunar Transfer Trajectory Injection, and Powered Descent & Lunar Landing. Leveraging the General Mission 

Analysis Tool (GMAT), we translate design thinking solutions into testable virtual prototypes, allowing for 

iterative refinement and optimization of the mission plan. This approach prioritizes efficiency and functionality, 

ultimately paving the way for more cost-effective and successful lunar exploration endeavors. 
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1. Introduction 

anding a spacecraft on the Moon is a remarkable demonstration of human ingenuity and engineering prowess. 

While it might seem straightforward, the journey from Earth to lunar touchdown requires meticulously 

planned maneuvers, precise calculations, and skillful execution. This report explores how design thinking, a 

structured approach to innovation, can be applied to optimize the trajectory and operations of a lunar lander. 

 
Figure-1 Design Thinking Framework (Greer, 2020) 

As depicted in Figure 1, the design thinking framework provides a structured approach to innovation by 

focusing on the user's needs. In this context, the spacecraft itself is the "user." By leveraging this framework, our 

goal is to utilize our understanding of the spacecraft's technical, operational, and environmental requirements to 
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identify challenges it will encounter during each mission phase: Earth Escape, Orbital Insertion, Lunar Transfer 

Trajectory Injection, and Powered Descent & Lunar Landing. By acknowledging these challenges, we can 

prioritize specific operational hurdles and develop diverse solutions for various mission aspects, particularly those 

related to orbital mechanics. We will use GMAT to translate our design thinking solutions into a testable format. 

This powerful software is designed specifically for simulating spacecraft trajectories and enables us to create a 

virtual prototype for the critical phases of the lunar descent mission. This comprehensive virtual testing allows us 

to assess and refine our design before finalization. This iterative approach promises a more nuanced perspective 

on lunar lander design, prioritizing efficiency and functionality. By following the design thinking framework, this 

report aims to develop a mission plan that optimizes the spacecraft's journey and paves the way for future, cost-

effective lunar exploration endeavors. 

 

2. Background 

This section outlines the fundamental scientific and design principles that underpin a successful lunar lander 

mission. These principles can be broadly categorized into two main areas: rocket stability and orbital mechanics. 

2.1 Rocket Stability 

Rocket stability is a fundamental principle for a successful lunar landing mission. Newton's Second Law 

provides the foundation for understanding the forces acting on a rocket during flight, while the rocket equation 

and kinematic motion allows us to analyze how to achieve and interpret the resulting motion and trajectory. This 

understanding will enable engineers to optimize factors like nose cone design to enhance aerodynamic 

performance. Strategic alignment of the center of mass and center of pressure is also crucial for maintaining 

stability. These factors, alongside proper control systems, ensure controlled ascent and accurate trajectory, which 

is essential for any space mission. 

2.1.1 Newton's Second Law 

 

Figure-2 Rocket Propulsion Diagram (Byjus, n.d.) 

Our journey into space flight begins with the fundamental exploration of motion itself. Specifically, 

Newton's Second Law of Motion: 

𝐹 = 𝑚 ∗ 𝑎               (1) 

Equation (1) provides the "why" of motion, serving as the foundation for understanding the forces that govern 

rocket propulsion. This law states that the net force (F) acting on an object is equal to its mass (m) multiplied by 

its acceleration (a). In simpler terms, the force acting on an object determines how much that object speeds up or 
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slows down. 𝐹 =  𝑚 ∗ 𝑎 is crucial for understanding and achieving rocket stability. It allows us to understand 

and predict how various forces acting on the rocket – thrust, gravity, and drag (the aerodynamic force opposing 

the rocket's motion through the air, as depicted in Figure 2) – influence its movement and ultimately, its ability to 

maintain a desired trajectory. 

To maintain a desired trajectory, thrust—the primary forward-acting force generated by expelling propellant 

through the rocket engines—must overcome all opposing forces, particularly weight and drag, during the critical 

ascent phase. If thrust fails to exceed these opposing forces, the rocket may experience reduced acceleration, 

increased aerodynamic heating, deviations from the planned trajectory, or even failure to reach orbit. To mitigate 

these risks, engineers prioritize optimizing both the thrust-to-weight and thrust-to-drag ratios in rocket design and 

mission planning. 

2.1.2 The Tsiolkovsky (Rocket) Equation 

Building on the concept of thrust as the driving force behind rocket motion, we turn to the Tsiolkovsky Rocket 

Equation—a cornerstone of rocketry that expands on Newton’s Second Law. Newton's law establishes that a force 

acting on a mass produces acceleration, and in rocketry, this force is generated by expelling propellant. As fuel is 

consumed during flight, the rocket’s mass decreases, resulting in increased acceleration for a constant level of 

thrust. This dynamic interplay is important for understanding how rockets achieve the velocities needed for space 

travel. The Tsiolkovsky Rocket Equation mathematically expresses this relationship as: 

𝛥𝑣 = 𝑣𝑒𝑙𝑛(𝑚0/𝑚𝑓)        (2) 

where: 

• 𝛥𝑣 represents the total velocity change that the rocket achieves. It is the key value used to calculate how 

much 𝛥𝑣 is needed to complete specific maneuvers. 

• 𝑉𝑒 is the speed at which the exhaust gases leave the rocket’s propulsion system (measured relative to the 

rocket). As displayed in the following equation, it depends on the specific impulse (Isp) of the engine 

and the gravitational constant. Higher exhaust velocity allows for more efficient use of fuel, providing a 

greater change in velocity for a given amount of propellant. 

𝑉𝑒 = 𝐼𝑠𝑝 ∗ 𝑔0                    (3) 

• 𝐼𝑠𝑝 is the specific impulse of the rocket's engine (a measure of how efficiently the rocket uses fuel). 

• 𝑔0 is the standard gravitational acceleration on Earth (9.81 m/s2). 

• 𝑚0 is the initial mass of the spacecraft, including fuel. 

• 𝑚𝑓is the final mass of the spacecraft after fuel has been expended. 

 

This equation is essential for calculating how much 𝛥𝑣 is available for maneuvers, determining how much of 

the rocket's initial mass must be allocated to fuel, and assessing how efficiently that fuel is used. 

The rocket equation also directly impacts the thrust-to-weight ratio, a critical parameter for rocket 

performance. As the rocket's mass decreases with fuel consumption, the thrust-to-weight ratio improves, allowing 

the vehicle to accelerate more effectively. This improvement is especially crucial during the ascent phase, where 

sufficient thrust must overcome gravity and drag. A higher thrust-to-weight ratio not only ensures better 

acceleration but also reduces the time the rocket spends in high-drag regions of the atmosphere, thereby improving 

overall efficiency. 

By providing a framework for understanding the relationship between mass, thrust, and velocity, the rocket 

equation informs key design decisions, such as optimizing fuel usage, selecting engine specifications, and 

balancing payload capacity. These factors are fundamental to achieving the desired trajectory and ensuring the 

rocket's ability to overcome the opposing forces discussed earlier. 
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2.1.3 Kinematic Motion 

While Newton's Second Law provides the fundamental "why" of motion, and the rocket equation quantifies 

the "how" of changing that motion through propellant expulsion, a complete understanding of a rocket's trajectory 

requires a multi-disciplinary approach. 

As discussed previously, the Tsiolkovsky Rocket Equation is a cornerstone. It relates the change in velocity of 

a rocket to its initial mass, final mass, and exhaust velocity. By optimizing the parameters in this equation, 

engineers can design rockets that achieve the necessary 𝛥𝑣 for various space missions. However, the equation 

doesn't directly address how the rocket moves under the influence of forces. 

This is where kinematic motion equations come in. They describe the motion of an object experiencing 

constant acceleration, like a rocket during its powered ascent phase. These equations, like: 

𝑣 =  𝑣₀ +  𝑎𝑡 (𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 +  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ×  𝑡𝑖𝑚𝑒        (4) 

𝛥𝑥 =  ½(𝑣₀ +  𝑣)𝑡 (𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×  𝑡𝑖𝑚𝑒)    (5)  

𝛥𝑥 =  𝑣₀𝑡 +  ½𝑎𝑡² (𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×  𝑡𝑖𝑚𝑒 +  ½ ×  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ×  𝑡𝑖𝑚𝑒²)   (6)  

𝑣² =  𝑣₀² +  2𝑎𝛥𝑥 (𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2 +  2 ×  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ×  𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)  (7) 

allow us to analyze how the thrust-to-weight ratio impacts a rocket's trajectory and ascent profile. For instance, a 

higher T/W ratio translates to greater acceleration (a) in the kinematic equations. This higher acceleration results 

in a faster increase in velocity (𝑣) and a steeper ascent profile (𝛥𝑥) during powered flight. 

Calculating the rocket's position and velocity at different times based on its acceleration (derived from T/W) 

gives us valuable insights into its behavior. This information is crucial for optimizing the rocket's design and 

trajectory to achieve the desired flight path. 

2.1.4 Nose Cone Optimization 

In terms of achieving an optimal thrust-to-drag ratio during launch, one strategy is to streamline the vehicle's 

shape, particularly the nose cone, where air pressure is highest. This is because drag is directly affected by the 

surface area of the vehicle in contact with the air. The drag equation  

𝐷𝑟𝑎𝑔 =  ½ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗  𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎 ∗  𝑑𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦2      (8) 

highlights this relationship, where the reference area is often the cross-sectional area of the nose cone. 

However, drag is not solely dependent on surface area. It also increases significantly with the velocity of the 

vehicle relative to the air. Therefore, the challenge lies in balancing these two factors. 

The shape of the nose cone, in conjunction with the vehicle's velocity, plays a crucial role in the formation of 

shockwaves as the vehicle reaches hypersonic speeds. Together, these factors dictate whether the shockwave 

remains attached or becomes detached, impacting aerodynamic heating, drag (as described by the equation), and 

overall vehicle stability. 

 

Figure-3 Oblique Shock (Ansys Innovation Courses, n.d.) 
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Due to their geometry, sharp nose cones experience an attached shockwave, meaning the shockwave attaches 

directly to the tip of the nose cone (Figure 3). While this form of shock offers the benefit of presenting a smaller 

profile to the oncoming air, potentially reducing drag at lower speeds, at hypersonic speeds, the air cannot 

smoothly follow the sharp point. This leads to flow separation—the inability of the airflow to stay attached to 

the cone surface. The consequences of flow separation include a more turbulent wake, increased drag, and 

increased heating. 

 

Figure-4 Detached Bow Shock (Ansys Innovation Courses, n.d.) 

On the other hand, spherically blunt nose cones experience a detached shockwave, also known as a bow shock. 

As depicted in Figure 4, bow shocks are located further ahead of the cone. This detached bow shock formation, 

in comparison to sharp cones, allows for a more gradual deflection of airflow, which translates to lower drag on 

the launch vehicle. This reduction in drag can help maintain higher velocities during the critical phases of flight. 

Additionally, while a bow shock still creates a region of high pressure and temperature, the larger surface area of 

a blunt nose cone helps distribute the heating more evenly, reducing the peak intensity at the stagnation point. 

In summary, while sharp nose cones might offer a slight advantage in drag at very low speeds, their limitations 

at hypersonic speeds make them unsuitable for launch vehicles. Despite having a larger frontal area, spherically 

blunt nose cones offer significant advantages in managing drag, and thermal loads, and maintaining stable airflow 

during the critical launch phase. This is why more than 99% of launch vehicles are designed with these types of 

nose cones. 

2.1.5 Centering Forces 

The thrust-to-drag ratio is also dependent on the relationship between the vehicle's center of pressure (CoP) 

and center of mass (CoM). 

A rocket's CoM is the point where its mass is balanced, representing the average location of its overall mass 

distribution, including components such as the payload, fuel, and structural elements. This dynamic point shifts 

during flight as fuel is consumed, affecting the rocket's stability and control1. The CoM also serves as the point 

around which the rocket naturally rotates if subjected to external forces, making its position critical for maintaining 

a stable trajectory1. 

The CoP is a theoretical point representing the average location of aerodynamic forces, such as drag, which 

arise from the interaction between the rocket's surface and the surrounding airflow. It is referred to as a theoretical 

point because aerodynamic forces are not uniformly distributed across the rocket's surface1. For example, as 

discussed earlier, the nose cone, which directly faces the airflow, experiences high pressure, while this pressure 

diminishes along the rocket's body. 

The CoP's position relative to the CoM plays a vital role in determining the rocket's stability during flight, as 

it influences how the rocket responds to aerodynamic forces and external disturbances. Understanding and 

managing the CoP and CoM are essential for ensuring a controlled and stable ascent. 
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Figure-5 Centering Forces (Finio, 2023) 

As displayed in Figure 5, for a rocket to be stable, the CoP must be positioned behind the CoM along the 

flight path. This alignment ensures that any aerodynamic forces will produce a restoring moment that returns the 

rocket to its intended orientation if it deviates from its flight path. Conversely, if the CoP is in front of the CoM, 

disturbances created by aerodynamic forces will create a torque that amplifies any deviations, leading to 

instability. 

To ensure the CoP is correctly positioned relative to the CoM, engineers often add fins or other aerodynamic 

surfaces to the lower part of the rocket to move the CoP rearward. Additionally, they adjust the shape of the rocket 

and strategically place components such as fuel tanks, engines, and payloads within the rocket. 

In conclusion, in conjunction with optimizing the nose cone design, understanding the rocket's center of 

gravity, and centering forces, kinematic modeling plays a crucial role in achieving a stable flight path. By carefully 

balancing the aerodynamic forces acting on the vehicle, we can ensure that the flight remains stable and controlled, 

even at high speeds 

2.1.6 Exercise 1: Rocket Trajectory Prediction and Stability Analysis 

With a fully optimized and stable vehicle, we can now proceed to the critical task of calculating its launch 

trajectory. By considering factors such as the vehicle's mass, gravitational constant, thrust, nose cone diameter 

(to determine drag), drag coefficient, and air density, we can compute essential trajectory parameters at various 

stages of the ascent process. These include: 

• Initial Velocity: Essential for overcoming gravity and reaching the target orbit. 

• Altitude: Determines atmospheric drag and gravitational forces. 

• Drag Force: Opposes the rocket's motion, increasing with velocity and altitude. 

• Gravitational Force: Pulls the rocket towards Earth. 

• Net Force: The combined effect of thrust, drag, and gravity. 

• Acceleration: The rate of change of velocity. 

• Net Velocity: The overall speed and direction of the rocket. 
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Understanding these parameters is crucial for making timely adjustments to the trajectory, navigation, and 

mission objectives, optimizing fuel usage and performance, and enabling precise targeting for orbital 

maneuvers, planetary landings, or scientific observations, ensuring mission goals are met effectively. 

Consider the following example: For a launch vehicle with a mass of 10 kg, a thrust of 1000 Newtons, a nose 

cone diameter of 0.1 meters, a drag coefficient of 0.45, and an air density of 1.225 kg/m³, we can calculate these 

trajectory parameters to determine its performance and success in achieving orbit. 

 

Figure-6 Calculating Trajectory Parameters 

Initial Calculations: 

1. Initial State: At t=0.1 seconds, the rocket is stationary with zero initial velocity, altitude, and drag. 

2. Weight Force: Calculate the constant weight force acting on the rocket by multiplying its mass by the 

Earth’s acceleration. 

𝐹𝑤 = 𝑚 ∗ 9.81𝑚/𝑠2                                                                           (9) 

3. Net Force: Determine the net force acting on the rocket at each time step using the equation: 

𝑁𝑒𝑡 𝐹𝑜𝑟𝑐𝑒 =  𝑇ℎ𝑟𝑢𝑠𝑡 𝐹𝑜𝑟𝑐𝑒 −  𝑊𝑒𝑖𝑔ℎ𝑡 𝐹𝑜𝑟𝑐𝑒 −  𝐷𝑟𝑎𝑔 𝐹𝑜𝑟𝑐𝑒   (10) 

4. Net Acceleration: Calculate the acceleration using Newton's Second Law (Equation (1)). 

5. Net Velocity: Determine the net velocity by multiplying the net acceleration by the time interval. 

𝑉𝑛𝑒𝑡 =  𝐴𝑛𝑒𝑡 ∗ 𝑡      (11) 

Iterative Calculations: 

Having solved data at t = 0.1 seconds, we now have a solid foundation for our launch simulation. For the 

remaining time intervals (t = 1-5 seconds), we will follow a structured iterative approach: 

1. Initial Velocity: Use the final velocity from the previous time step as the initial velocity for the current 

time step. 

2. Calculate Altitude: Determine the altitude using the average velocity over the time interval: 

𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 =  ((𝑉0  +  𝑉𝑛𝑒𝑡) / 2)  ∗  (𝑡 − 𝑡0).   (12) 

3. Calculate Drag Force: Compute the drag force based on the initial velocity, air density, reference area, 

and drag coefficient (Equation (9)). 

4. Calculate Net Force: Subtract the weight and drag forces from the thrust force to determine the net 

force acting on the rocket (Equation (10)). 

5. Calculate Net Acceleration: Use Newton's Second Law (Equation (1)) to find the acceleration resulting 

from the net force. 

6. Update Velocity: Calculate the net velocity for the current time step by multiplying the net acceleration 

by the time interval by the initial velocity (Equation (11)). 
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Figure-7 Data Interpretation 

The graph above illustrates the calculated trajectory of the rocket during the first seconds of its ascent. At t=5s 

and an altitude of 708.02 m, air resistance is significant and increases with velocity, requiring the rocket to 

generate sufficient thrust to overcome drag and gravity. As fuel is consumed, the rocket’s mass decreases, which 

would typically lead to increased acceleration. However, during this phase, acceleration might decrease due to the 

rapidly increasing drag force, which grows quadratically with velocity in the dense lower atmosphere. 

Additionally, if the thrust remains constant while the opposing forces (drag and gravity) increase faster than the 

reduction in mass, the net force acting on the rocket decreases. This, coupled with potential engine throttling to 

manage structural stress, could lead to a temporary reduction in acceleration despite the reduction in mass. 

As Time Progresses: 

• Initial Velocity: The rocket’s velocity increases steadily as thrust overcomes drag and gravity. 

• Altitude: The altitude increases at an accelerating rate as the rocket climbs higher, eventually moving 

into thinner atmospheric layers where drag decreases. 

• Drag: As the rocket gains altitude and enters regions of lower air density, the drag force begins to 

decrease despite increasing velocity. 

• Net Force: As drag diminishes at higher altitudes and the rocket’s mass decreases, the net force 

increases, allowing for greater acceleration. 

• Net Acceleration: Net acceleration begins to increase as the rocket burns fuel, reducing its mass, and as 

drag lessens with altitude. 

• Net Velocity: The velocity increases steadily over time, accelerating faster as drag decreases and a larger 

proportion of thrust contributes to forward motion. By the time the rocket exits the lower atmosphere, 

velocity growth becomes more pronounced. 

This progression highlights the interplay between forces acting on the rocket during its ascent, illustrating how it 

transitions from battling drag and gravity in the dense atmosphere to accelerating efficiently in thinner air. 



Acceleron Aerospace Journal || AAJ.11.2106-2508 

Volume 4, Issue 2, pp (886-910) 

E-ISSN- 2583-9942 

 

AAJ 4-2 (2025) 886-910  9 

 

 

By analyzing these parameters throughout the launch, engineers can fine-tune the rocket's flight path, ensuring a 

smooth ascent and a flawless transition into its intended parking orbit in low Earth orbit (LEO). which will serve 

as an intermediate stage before the final transfer to the Moon's orbit. 

2.2 Orbital Mechanics 

A successful lunar landing mission hinges on both a stable and well-designed rocket and a deep understanding 

of orbital mechanics. With the spacecraft on its way to its parking orbit, we can now begin analyzing the necessary 

orbital maneuvers that guide the spacecraft on its journey to the lunar celestial body. Orbital mechanics, the 

science governing object motion in space, provides the tools to calculate these trajectories. Concepts such as 

orbital elements, Kepler’s laws of motion, orbital insertion, escape velocity, and orbital transfers become crucial 

in determining the maneuvers required for the spacecraft to escape Earth's gravity, reach the Moon's vicinity, and 

ultimately land safely on its surface. 

2.2.1. Orbital Elements 

An orbit is “an imaginary path followed by an object while it is moving under the influence of any other object”. 

As shown in Figure 8, key parts and attributes of an orbit include: 

 

Figure-8 Orbital Elements (Luo, Q., Peng, W., Wu, G., Xiao, Y., 2022) 

• Semi-Major Axis (a): The semi-major axis is the longest radius of an elliptical orbit, extending from 

the center of the ellipse to the farthest point on the orbit. For a circular orbit, the semi-major axis is 

simply the radius. 

• Eccentricity (e): The eccentricity describes the shape of the orbit, specifically how elongated or 

"stretched out" it is. An orbit with e = 0 is perfectly circular, while an orbit with 0 < e < 1 is elliptical, 

and e = 1 is parabolic. 
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• Periapsis and Apoapsis: 

 

Figure-9 Periapsis vs. Apoapsis (Vij, 2022) 

o Periapsis (or Perigee for Earth orbits): Per Figure 9, the point of periapsis is the closest 

point of the orbit to the central body. 

o Apoapsis (or Apogee for Earth orbits): As shown in Figure 9, the apoapsis is the farthest 

point from the central body. 

• Inclination (i): The inclination is the angle between the orbital plane and the equatorial plane of the 

central body (for example, Earth's equator). 

• Longitude of Ascending Node (Ω): The longitude of the ascending node is the angle between a 

reference direction (such as the vernal equinox) and the ascending node, which is the point where the 

orbit crosses the equatorial plane from south to north. 

• Argument of Periapsis (ω): The argument of periapsis defines the orientation of the ellipse within the 

orbital plane. It measures the angle between the ascending node and the point of periapsis. 

• True Anomaly (ν): The true anomaly is the angle between the periapsis and the current position of the 

orbiting body, measured at the central body 

Orbits vary in size and shape and can be elliptical, parabolic, or circular. For our mission, we will focus on 

circular orbits. With certain orbital elements, such as eccentricity, periapsis/apoapsis, and the argument of 

periapsis are less applicable to circular orbits as the object maintains a constant distance from the central body. 

Additionally, orbits can be either bounded or unbounded. Bounded orbits, like circular and elliptical orbits, 

are closed paths that repeat. Unbounded orbits, such as parabolic and hyperbolic orbits, are open paths that do 

not repeat. 

2.2.2. Johannes Kepler’s Laws of Planetary Motion 

With the fundamentals of orbits established, we can redirect our attention to Kepler's laws. Kepler’s three laws of 

planetary motion describe how objects move in orbit, based on careful observations of the planets around the Sun. 

As depicted in the following figure, these laws provide fundamental insights into orbital mechanics and are 

essential for understanding the behavior of orbiting bodies. 

 

Figure-10 Kepler's Law of Planetary Motion (Soumyadeep, 2024) 

1. Kepler’s First Law (Law of Ellipses): All planets or satellites move in elliptical orbits with the Sun (or 

the central body) at one of the two foci. 

2. Kepler’s Second Law (Law of Equal Areas): A line connecting a planet (or satellite) to the Sun (or the 

central body) sweeps out equal areas at equal times. This law is reflected in the changing orbital speed 



Acceleron Aerospace Journal || AAJ.11.2106-2508 

Volume 4, Issue 2, pp (886-910) 

E-ISSN- 2583-9942 

 

AAJ 4-2 (2025) 886-910  11 

 

 

of the object. The body moves fastest at periapsis (A1) and slowest at apoapsis (A2). This variation in 

speed is directly linked to the semi-major axis of the orbit and the total orbital energy. 

3. Kepler’s Third Law (Law of Harmonies): The square of the orbital period (T) of a planet is directly 

proportional to the cube of the semi-major axis (a) of its orbit (T2 ∝ a3) which means that if the size of 

an orbit (through the semi-major axis) is known, you can determine the orbital period. The larger the 

orbit (greater a), the longer the period. 

3.2.3. Orbital Insertion 

Using our newfound knowledge of orbital elements and Kepler's Laws, we can now discuss the critical process 

of orbital insertion. Orbital insertion is the process of placing a spacecraft into a specific orbit around a celestial 

body. To achieve this, the spacecraft must: 

1. Attain the necessary orbital velocity: This requires a significant acceleration imparted by the rocket 

engines. Orbital velocity dictates the speed at which the spacecraft orbits its parent body (Earth). 

Maintaining this precise velocity is crucial for a stable orbit. 

For elliptical orbits, the orbital velocity varies at different points in the orbit. It is highest at periapsis and lowest 

at apoapsis. However, in the case of circular orbits, orbital velocity is equal to 

𝑣 =  √(𝐺𝑀/𝑟)       (13) 

where: 

• 𝒗 is the orbital velocity 

• 𝑮 is the universal gravitational constant/ centrifugal force (approximately 6.674 × 10-11 N m²/kg²) 

• 𝑴 is the mass of the central body (e.g., Earth) 

• 𝒓 is the radius of the orbit (distance from the center of the central body) depending on the mass of the 

central body and the radius of the orbit. 

This equation shows that the orbital velocity depends on the mass of the central body and the radius of the orbit. 

A larger central body or a smaller orbital radius will result in a higher orbital velocity. 

2. Achieve the desired altitude: This is accomplished through the continuous burning of the rocket's 

engines, propelling it upwards through the atmosphere. 

3. Establish the correct orbital inclination: The rocket's trajectory must be carefully controlled to achieve 

the desired inclination of the orbit relative to the Earth's equator. 

4. Execute the orbital insertion burn: At the apogee of the ascent trajectory, the spacecraft's engines are 

fired for a precise duration, providing the final velocity increment needed to achieve the desired circular 

orbit. 

The orbital insertion process typically culminates in the establishment of a parking orbit, which allows for 

precise timing and alignment of subsequent burns, optimizing efficiency and increasing the likelihood of mission 

success. 

2.2.4. Escape Velocity 

Given the spacecraft is in its parking orbit, we can now apply the fundamental concepts of orbital mechanics to 

guide its transition from the inner parking orbit to its target orbit. To initiate this transition, it is essential to 

understand the velocity requirements for escaping or transferring between orbits. 

Escape velocity is the minimum speed needed for an object to escape the gravitational pull of a massive body. If 

an object reaches an escape velocity, it can overcome the gravitational force and move indefinitely away from the 

body1. The formula for escape velocity is 

𝑣𝑒𝑠𝑐𝑎𝑝𝑒  =  √(2𝐺𝑀/𝑟)     (14) 

where: 

• 𝒗𝒆𝒔𝒄𝒂𝒑𝒆 is the escape velocity 

• 𝑮 is the universal gravitational constant 
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• 𝑴 is the mass of the celestial body 

• 𝒓 is the distance from the center of the celestial body 

For Earth, the escape velocity is approximately 11.2 km/s (11200 m/s). This means that a spacecraft must reach 

this speed to break free from Earth's gravitational pull and travel into deep space. Escape velocity depends on the 

spacecraft's altitude: The higher the parking orbit, the lower the escape velocity, because Earth's gravitational 

influence weakens with distance. 

2.2.5. Orbital Transfers 

With the vehicle meeting its escape velocity, we can begin the orbital transfer—a crucial process for moving 

a spacecraft from one orbit to another, typically around the same central body. Orbital transfers involve controlled 

changes in the spacecraft’s velocity to adjust its orbital energy and trajectory, enabling the transition between 

orbits. The efficiency of a transfer is closely tied to delta-v, to minimize fuel consumption while achieving mission 

goals. 

Efficient transfers require precise timing and alignment with the target orbit, as these factors ensure the 

maneuver’s success and fuel economy. While various techniques such as bi-elliptic and low-thrust transfers exist, 

in this scenario—where the spacecraft transitions between two circular orbits—a Hohmann transfer is the most 

appropriate and commonly used method1. This maneuver, discussed in the following section, exemplifies how 

orbital mechanics and fuel optimization come together to achieve mission objectives. 

2.2.5.1. Hohmann Transfer 

 

Figure-1 Hohmann Transfer Orbit (Space Technology and Aeronautical Rocketry, n.d.) 

The Hohmann transfer, as shown in Figure 11, is a widely used transfer maneuver used to transfer spacecraft 

from LEO to the Moon, Mars, and asteroids (Space Technology and Aeronautical Rocketry, n.d.). The 

Hohmann transfer calculates the delta-v needed for orbital changes when it comes to moving from one circular 

orbit to another. It consists of two burns to provide the required velocities and consists of the following steps: 

• First orbital burn: A burn is performed at the perigee of the initial circular, parking orbit to raise the 

spacecraft's apogee, transforming the circular orbit into an elliptical one. 

• Second orbital burn: At the apogee of the newly formed elliptical orbit, a second burn is performed to 

circularize the orbit at the desired altitude, such as a lunar transfer orbit. 

This sequence of burns allows the spacecraft to efficiently transfer from its initial parking orbit to the 

desired target orbit. 

2.2.6. Exercise 2a: Calculating Orbital Parameters 

Expanding on the success of a fully optimized and stable vehicle that has reached its trajectory, this exercise 

focuses on the precise calculations required for orbital maneuvers. Using Earth's parameters, such as its 
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gravitational constant (6.6743E-11Nm2/kg2) and radius (6378000 m), along with the target altitudes for inner and 

outer orbits, we will determine the orbital velocities required at each stage and the parameters of the transfer orbit. 

These calculations are essential for planning the trajectory from an initial circular orbit to a higher circular orbit, 

requiring a detailed understanding of orbital mechanics and the principles governing orbital transfers. 

In this exercise, we will use established formulae and techniques to: 

• Calculate the velocities for the inner and outer circular orbits based on their respective altitudes. 

• Derive the characteristics of the transfer orbit, including its semi-major axis, eccentricity, and the 

velocity changes required at the points of departure and arrival. 

• Evaluate how Earth's gravitational parameters influence the transfer trajectory and ensure a smooth 

transition between orbits. 

By mastering these calculations, we gain the tools necessary to design efficient orbital maneuvers for missions 

involving satellite deployment, interplanetary transfers, or rendezvous operations. 

Consider the following example: The spacecraft LEO at 400,000 m above the Earth's surface and needs to be 

transferred to a target orbit at 36,000,000 m: 

 

Figure-12 Calculating Orbital Parameters 

Calculate Inner Orbit Parameters: 

1. Define the Altitude: The height of the spacecraft’s orbit above the Earth’s surface (400,000 m). 

2. Calculate the Orbital Radius (𝒓𝒊𝒏): Add the Earth’s radius to the altitude: 

𝑟𝑖𝑛 = 𝑅 + 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒     (15) 

3. Determine the Velocity (𝒗𝒊𝒏): Use the orbital velocity formula to calculate the velocity required to 

maintain a stable inner orbit: 

𝑉𝑖𝑛 = √𝐺 ⋅ 𝑀 ⋅ (2/𝑟𝑖𝑛 − 1/𝑟𝑖𝑛)          (16) 
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Calculate Outer Orbit Parameters: 

1. Define the Outer Orbit Altitude: Choose the desired altitude for the outer orbit (36,000,000 m). 

2. Calculate the Outer Orbit Radius (𝒓𝒐𝒖𝒕): Add the inner orbit radius to the outer orbit altitude: 

𝑟𝑜𝑢𝑡 = 𝑟𝑖𝑛 + 𝑜𝑢𝑡𝑒𝑟 𝑜𝑟𝑏𝑖𝑡 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒                (17) 

3. Determine the Outer Orbit Velocity (𝒗𝒐𝒖𝒕): Use the orbital velocity formula to calculate the velocity 

required to maintain the outer orbit: 

𝑣𝑜𝑢𝑡 = √𝐺 ⋅ 𝑀 ⋅ (2/𝑟𝑜𝑢𝑡 − 1/𝑟𝑜𝑢𝑡)     (18) 

Calculate Transfer Orbit Parameters (Hohmann Transfer): 

1. Define Perigee and Apogee: 

• Perigee: Closest point in the transfer orbit, equal to the radius of the inner orbit. 

• Apogee: Farthest point in the transfer orbit, equal to the radius of the outer orbit. 

2. Calculate the Transfer Orbit Radius (𝒓𝒕𝒓𝒂𝒏𝒔𝒇𝒕𝒆𝒓): Find the average of the perigee and apogee 

distances: 

𝑟𝑡𝑟𝑎𝑛𝑠𝑓𝑡𝑒𝑟 = (𝑟𝑝𝑒𝑟𝑖𝑔𝑒𝑒 + 𝑟𝑎𝑝𝑜𝑔𝑒𝑒)/2     (19) 

3. Determine Velocity at Perigee (𝒗𝒑): Use the transfer orbit velocity formula to find the 

spacecraft’s velocity at perigee: 

𝑉𝑝 = √𝐺 ⋅ 𝑀 ⋅ (2/𝑟𝑝𝑒𝑟𝑖𝑔𝑒𝑒 − 1/𝑟𝑡𝑟𝑎𝑛𝑠𝑓𝑡𝑒𝑟)    (20) 

4. Determine Velocity at Apogee (𝒗𝒂): Similarly, calculate the spacecraft’s velocity at apogee: 

𝑉𝑎 = √𝐺 ⋅ 𝑀 ⋅ (2/𝑟𝑎𝑝𝑜𝑔𝑒𝑒 − 1/𝑟𝑡𝑟𝑎𝑛𝑠𝑓𝑡𝑒𝑟)    (21) 

5. Calculate Delta-v Requirements: 

• Delta-v at Perigee: The change in velocity required to enter the transfer orbit. 

• Delta-v at Apogee: The change in velocity required transition into the outer orbit. 

This step-by-step approach provides clear insights into orbital dynamics, emphasizing the relationships 

between gravitational forces, orbital velocities, and delta-v requirements. 

By calculating each parameter, this exercise demonstrates the critical steps involved in planning orbital 

maneuvers and reinforces the practical application of orbital mechanics in mission planning. 

2.2.7. Exercise 2b: Calculating Spacecraft Parameters 

 

Figure-13 Calculating Spacecraft Parameters 

Given the required delta-v for the perigee burn (2401.03 m/s) calculated in the previous section, a specific 

impulse (Isp) of 300 seconds, and a final spacecraft mass of 1200 kg, we can use the rocket equation to determine 

the initial mass (m0), the propellant mass (mp), and the burn time needed for the first burn. 

1. Rearrange the Rocket Equation (Equation (2)) to Find Initial mass (m0):  

𝑚0 = 𝑚𝑓 ⋅ 𝑒𝑥𝑝(𝛥𝑣/𝑣𝑒) 
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2. Calculate the Propellant Mass (mp): The propellant mass is the difference between the initial mass 

and the final mass: 

𝑚𝑝 = 𝑚0 − 𝑚𝑓      (22) 

3. Determine the Burn Time: 

To calculate the burn time, we first determine the mass flow rate using the thrust and exhaust velocity 

(𝑀𝑎𝑠𝑠 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 = 𝑇ℎ𝑟𝑢𝑠𝑡/𝑣𝑒)                      (23) 

Now, the burn time can be found by dividing the propellant mass by the mass flow rate 

(𝐵𝑢𝑟𝑛 𝑇𝑖𝑚𝑒 = 𝑚𝑝/𝑀𝑎𝑠𝑠 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒)       (24) 

By performing similar calculations for the apogee burn, we can determine the total propellant mass required 

for the entire Hohmann transfer maneuver. This analysis allows us to assess the feasibility of the mission and 

optimize the spacecraft's design and trajectory. 

3. Mission Design and Methodology 

With the fundamentals of spaceflight established, we can now begin to plan our lunar lander mission. Our goal 

is to launch a 1000 kg payload to the Moon using a two-stage vehicle. This mission can be broken down into three 

primary phases: 

1. Sky is Not the Limit: This phase focuses on launching the spacecraft from Earth and ascending beyond 

its atmosphere. The rocket's engines must generate sufficient thrust to overcome Earth's gravity and 

propel the spacecraft into space. To analyze this process, we will use Excel simulations to model the 

rocket's ascent, accounting for factors such as mass reduction, thrust, aerodynamic drag, and gravitational 

forces. 

2. To the Moon and Never Back: Once the spacecraft has escaped Earth's gravity, it will be inserted into 

a parking orbit 300 km above Earth. Subsequent maneuvers, such as a Hohmann transfer, will propel the 

spacecraft toward the Moon. We will employ tools like GMAT to simulate these orbital maneuvers and 

calculate the required delta-v. 

3. A Giant Leap: Upon reaching the Moon, the spacecraft will perform a series of maneuvers to slow down 

and achieve a soft landing on the lunar surface. 

By carefully planning and executing these phases, and leveraging tools like Excel and GMAT, we can 

successfully deliver our payload to the Moon. 

3.1. Phase 1: Sky is Not the Limit 

The initial phase focuses on evaluating the launch vehicle's capabilities and the performance of its propulsion 

systems in propelling the spacecraft beyond Earth's atmosphere. This stage incorporates design strategies to 

optimize the launch trajectory and minimize fuel consumption, ensuring efficient and effective ascent. 

3.1.2. Objectives 

• Design a launch trajectory that safely propels the spacecraft beyond Earth's atmosphere and establishes 

a stable LEO. 

• Determine the required delta-v (change in velocity) for this maneuver, considering the interplay between 

the spacecraft's thrust, gravitational pull (weight), and atmospheric drag. 

• Optimize the burn profile to minimize fuel consumption while ensuring mission success. 
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3.1.3. Calculations and Simulations 

 

Figure-14 Phase 1: Calculating Launch Vehicle Parameters 

 

Figure-15 Phase 1: Trajectory Simulation 
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Figure-16 Phase 1: Trajectory Simulation (2) 

 

Figure-17 Phase 1: Trajectory Simulation (3) 
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Figure-18 Phase 1: Trajectory Simulation (4) 

To simulate the launch of a multistage rocket, we began by empathizing with the challenges faced by aerospace 

engineers in designing and optimizing rocket trajectories. We understood the need to accurately model the 

complex interplay between forces, mass, and energy during the launch process. 

Next, we defined the problem as a multi-stage simulation that would track the rocket's position, velocity, and 

acceleration over time. Key parameters, such as initial mass, thrust, specific impulse, and atmospheric conditions, 

were identified as crucial inputs to the simulation. 

To ideate a solution, we adopted a numerical integration approach, using a time-stepping method to calculate 

the rocket's trajectory. We broke down the simulation into smaller time steps, updating the rocket's state variables 

at each step based on the forces acting upon it. 
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The prototype for this simulation was implemented in Excel. We developed a spreadsheet model that 

incorporated the following steps: 

1. Initial Conditions: Defined the initial mass, thrust, specific impulse, and other relevant parameters. 

2. Time-Step Calculation: Calculated the change in velocity and position at each time step based on the 

net force and acceleration. 

3. Mass Update: Accounted for the reduction in mass due to propellant consumption. 

4. Atmospheric Drag: Incorporated the effects of atmospheric drag on the rocket's motion. 

5. Gravitational Force: Considered the varying gravitational force as the rocket ascends. 

By refining our model, we were able to test and learn from the simulation results. We analyzed the impact of 

different parameters on the rocket's trajectory and identified potential areas for optimization. 

This approach allowed us to develop a robust and accurate simulation tool that can be used to analyze various 

rocket designs and mission scenarios. 

3.1.3.1. Formulae 

• Rocket Equation (Equation (2)) 

• Newton’s Second Law of Motion (Equation (1)) 

• Area of a Circular Cross-Section 

(𝐴 = 𝜋𝑑2/4)      (25) 

• Thrust 

𝑡ℎ𝑟𝑢𝑠𝑡 = (𝐼𝑠𝑜 ∗ 𝑚𝑝 ∗ 𝑔0)/𝑏𝑢𝑟𝑛𝑡𝑖𝑚𝑒     (26) 

• Mass Flow Rate (Equation (23)) 

• Drag Force (Equation (8)) 

• Kinematic Equations (Equation (4), Equation (5)) 

• Staging Mass Relations (Equation (22) 

3.2. Phase 2: Orbital Insertion & Trans-Lunar Injection (TLI) 

Once Earth escape is achieved, the spacecraft needs to be inserted into a 300 km parking orbit. From the 

parking orbit, a series of three orbit-raising maneuvers can be conducted. These maneuvers, planned and simulated 

using GMAT software, incrementally increase the spacecraft's velocity to the required 10.8 km/s for Trans-Lunar 

Injection (TLI).TLI will then propel the spacecraft on a trajectory toward the Moon. 

3.2.1. Objectives 

Establish a stable circular parking orbit at a targeted altitude of 300 km around Earth. 

• Perform any necessary orbital maneuvers to achieve the desired 300 km circular orbit, considering factors 

like residual launch vehicle velocity and orbital plane adjustments. 

• Optimize the burn profile(s) for this maneuver to minimize propellant consumption while ensuring a safe 

and efficient orbital insertion. 

• Conduct a series of three optimized orbit-raising maneuvers to reach the desired TLI apogee. Utilize 

mission analysis tools to verify trajectory corrections. 

• Calculate the precise delta-v for TLI, considering the final orbit and desired lunar transfer trajectory. 

Evaluate burn window opportunities and develop a preliminary fuel-efficient burn profile targeting 10.8 

km/s injection velocity. 
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3.2.2. Calculations and Simulations 

Figure-19 Phase 2: Orbital Insertion and TLI Calculations 
 

3.2.2.1. Parking Orbit 

 

Figure-20 Phase 2: Parking Orbit (GMAT) 

To initiate the lunar transfer, we first established a stable parking orbit at an altitude of 300 km. To achieve 

this, we empathized with the need to accurately calculate the required delta-v for the orbital insertion burn, 

considering factors like the initial orbital velocity and the desired altitude. 
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Defining the problem involved identifying the specific parameters of the parking orbit, such as its semi-major 

axis and eccentricity. 

Ideating and prototyping the solution involved simulating the orbital insertion maneuver using GMAT as 

displayed in Figure 20. 

3.2.2.2. Maneuvers 1 and 2 

 

Figure-21 Phase 2: Orbital Maneuvers 

After establishing the stable parking orbit at 300 km, we initiated a series of orbital maneuvers to position the 

spacecraft for lunar transfer. The first maneuver, as depicted in Figure 21, involved a precise burn to raise the 

apogee of the orbit from 300 km to 15,000 km. This significantly elongated the orbit, positioning the spacecraft 

for the next maneuver. 

Subsequently, a second burn (not pictured) was executed to further raise the apogee to 18,000 km. This 

maneuver brought the spacecraft closer to the desired trajectory for lunar transfer, setting the stage for the final, 

critical burn. 

To execute these maneuvers, we calculated the required delta-v, initial mass, propellant mass, and burn time 

for each burn. By carefully considering factors like engine performance, fuel efficiency, and orbital mechanics, 

we optimized the trajectory and ensured the spacecraft's successful transfer to the Moon. 

3.2.2.3. Trans-Lunar Injection 

 

Figure-22 Phase 2: TLI (GMAT) 



 

 
  AAJ.11.2106-2508 

 

  

 

After the second burn in which the spacecraft achieved the raised orbit with an apogee of 18,000 km, the 

final task was to execute the TLI burn (Figure 22). This maneuver allowed the spacecraft with a velocity of 10.8 

km/s to overcome Earth's gravitational pull and establish its trajectory toward the Moon. In planning this 

maneuver, we carefully accounted for the gravitational influences of both Earth and the Moon to ensure a 

precise and efficient transfer trajectory. Given the tight fuel constraints, there was very little room for error, 

making accurate calculations and execution critical to mission success. 

3.2.2.4. Formulae 

• Radius of Orbit (Equation (15)) 

• Velocity in orbit (Equation (16)) 

• Total Fuel (Equation (22)) 

• Radii of Perigee and Apogee 

o 𝑟𝑝𝑒𝑟𝑖𝑔𝑒𝑒 = 𝑟𝐸𝑎𝑟𝑡ℎ 𝑝𝑎𝑟𝑡𝑘𝑖𝑛𝑔 𝑜𝑟𝑏𝑖𝑡  

o 𝑟𝑎𝑝𝑜𝑔𝑒𝑒 = 𝑟𝐸𝑎𝑟𝑡ℎ−𝑀𝑜𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒   

• Semi-major axis 

𝑎 = (𝑟𝑝𝑒𝑟𝑖𝑔𝑒𝑒𝑟𝑜𝑟𝑏𝑖𝑡 𝑎𝑝𝑜𝑔𝑒𝑒)/2      (27) 

• Elliptical Orbit Velocities (Equation (20), Equation (21)) 

• Initial and Final Mass 

𝑚0 = 𝑚𝑓 ∗ 𝑒𝛥𝑣/(𝐼𝑠𝑝 ∗ 𝑔0)     (28) 

• Burn Time 

𝑡𝑏𝑢𝑟𝑛 = (𝐼𝑠𝑝 ∗ 𝑔0 ∗ 𝑚𝑝)/𝑇     (29) 

3.3. Phase 3: A Giant Leap 

The final and most delicate phase involves the powered descent and landing on the lunar surface. With the 

spacecraft positioned ~600m above the Lunar surface, design thinking is crucial in this phase for identifying 

opportunities, such as leveraging lunar gravity, and addressing hazards in the lunar environment to ensure a safe 

and controlled landing. 

4.3.1. Objectives 

• Design a controlled descent trajectory that safely guides the spacecraft from lunar orbit to a targeted 

landing site on the Moon's surface. 

• Develop a powered descent burn profile that optimizes fuel consumption while ensuring proper engine 

throttling and deceleration for a soft lunar touchdown. 

• Perform Science 

4.3.2. Calculations and Simulations 
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Figure-23 Phase 3: Spacecraft Parameters During Freefall 

As exemplified in Figure 23, the lander initiates a controlled, free-fall descent from an altitude of 600 meters 

to a critical altitude of 212.5 meters above the lunar surface. By using our understanding of the spacecraft’s 

propulsion parameters, lunar gravity, and the desired landing altitude, we can calculate the necessary free-fall time 

and velocity. This controlled descent minimizes fuel consumption while ensuring a safe and soft landing. Any 

deviation from the planned trajectory or unexpected events during the descent could result in the loss of the 

payload and compromise the mission's scientific objectives. 

 

Figure-24 Phase 3: Landing Trajectory Parameters 

When the lander reaches an altitude of 212.5 meters, the engines ignite for a final burn to slow the descent and 

ensure a soft landing. This phase, captured in Figure 24, depicts the final 12 seconds before touchdown. It is 

evident from the figure that the lander is decelerating as it approaches the lunar surface, as indicated by the 

decreasing altitude and velocity over time. 

3.3.2.3. Deceleration/ Touchdown 

Using high-precision timing and control of the lander's thrusters, the final phase of the descent aims to gradually 

reduce the lander's velocity to zero at the precise moment of touchdown. 
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3.3.2.4. Formulae 

• Altitude 

𝐻 = (½)𝑔𝑡2      (30) 

• Velocity at end of fall 

𝑣 = 𝑔𝑡              (31) 

• Average Velocity 

𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙/2     (32) 

• Time 

𝑡 =  (2𝐻)/𝑣      (33) 

• Rocket Equation (Equation (2)) 

• Thrust (Equation (26)) 

4. Conclusion 

During my internship, I applied design thinking principles to optimize a lunar lander mission. By leveraging 

my knowledge of rocket stability and orbital mechanics, I successfully navigated the design process, from 

empathizing with the mission's objectives to testing and refining the lunar landing strategy. I utilized Excel and 

GMAT to conduct a detailed simulation of the lander's mission, focusing on optimizing ascent, orbital maneuvers, 

and landing trajectories to minimize propellant expenditure. This practical experience solidified my understanding 

of aerospace engineering principles and the value of a user-centered approach to problem-solving 

5. Acknowledgement 

I would like to express my sincere gratitude to my mentors at Space Technology & Aeronautical Rocketry 

(STAR), located in Surat, Gujarat, India, for providing me with the research topic and invaluable guidance 

throughout my internship. Their expertise in aviation and aerospace component manufacturing, coupled with 

their commitment to innovation, enriched my learning experience. 

6. Disclosures 

During the preparation of this work, the author used ChatGPT to enhance clarity and fluency of expression. 

After using this tool/service, the author reviewed and edited the content as needed and takes full responsibility 

for the content of the publication. 

  



Acceleron Aerospace Journal || AAJ.11.2106-2508 

Volume 4, Issue 2, pp (886-910) 

E-ISSN- 2583-9942 

 

AAJ 4-2 (2025) 886-910  25 

 

 

7. References 

[1] Ansys Innovation Courses. (n.d.). Oblique shock waves. Ansys. Retrieved from 

https://innovationspace.ansys.com/courses/courses/shock-expansion-theory/lessons/oblique-shock-

waves-lesson-3/ 

[2] Byju's. (n.d.). Rocket propulsion. Retrieved from https://byjus.com/physics/rocket-propulsion/ 

[3] Finio, B. (2023, September 14). Model rocket aerodynamics: Stability. Science Buddies. Retrieved from 

https://www.sciencebuddies.org/science-fair-projects/project-ideas/Aero_p002/aerodynamics-

hydrodynamics/model-rocket-stability 

[4] Greer, M. (2020, February 24). Design thinking: An introduction. Usability Geek. Retrieved from 

https://usabilitygeek.com/start-here/ 

[5] Luo, Q., Peng, W., Wu, G., & Xiao, Y. (2022, April 19). Orbital maneuver optimization of Earth 

observation satellites using an adaptive differential evolution algorithm. Remote Sensing, 14(9), 1966. 

MDPI. Retrieved from https://www.mdpi.com/2072-4292/14/9/1966 

[6] Microsoft Corporation. (2021). Microsoft Excel (Version 2021) [Computer software]. Retrieved from 

https://www.microsoft.com/en-us/microsoft-365/excel 

[7] National Aeronautics and Space Administration. (2025). General Mission Analysis Tool (GMAT). 

[8] OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model]. Retrieved from 

https://chat.openai.com/chat 

[9] Sawada, H., et al. (2014). Development of a lunar lander simulation software for educational purposes. 

Sensors, 14(9), 1966–1982. 

[10] Soumyadeep. (2024, October 3). Kepler’s law of planetary motion for class 11: Get Kepler first and 

second laws. Adda247. Retrieved from https://www.adda247.com/school/keplers-laws-of-planetary-

motion/ 

[11] Space Technology & Aeronautical Rocketry. (2023). Orbital mechanics guide (1st ed.). 

[12] Vij, R. (2022, June 16). The Oberth effect: How does it work? [Blog post]. Medium. Retrieved from 

https://medium.com/@rohankvij/the-oberth-effect-how-does-it-work-astronautics-for-dummies-part-1-

15ee1b20eb40 

8. References 

The author declares no competing conflict of interest. 

9. Funding 

No funding was issued for this research.  


