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Abstract: This report investigates the application of design thinking principles to optimize the trajectory and
operations of a lunar lander. By considering the spacecraft as the "user" within the design thinking framework,
we aim to identify and address critical challenges during key mission phases: Earth Escape, Orbital Insertion,
Lunar Transfer Trajectory Injection, and Powered Descent & Lunar Landing. Leveraging the General Mission
Analysis Tool (GMAT), we translate design thinking solutions into testable virtual prototypes, allowing for
iterative refinement and optimization of the mission plan. This approach prioritizes efficiency and functionality,
ultimately paving the way for more cost-effective and successful lunar exploration endeavors.
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1. Introduction

anding a spacecraft on the Moon is a remarkable demonstration of human ingenuity and engineering prowess.

While it might seem straightforward, the journey from Earth to lunar touchdown requires meticulously
planned maneuvers, precise calculations, and skillful execution. This report explores how design thinking, a
structured approach to innovation, can be applied to optimize the trajectory and operations of a lunar lander.

Figure-1 Design Thinking Framework (Greer, 2020)
As depicted in Figure 1, the design thinking framework provides a structured approach to innovation by
focusing on the user's needs. In this context, the spacecraft itself is the "user.” By leveraging this framework, our
goal is to utilize our understanding of the spacecraft's technical, operational, and environmental requirements to
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identify challenges it will encounter during each mission phase: Earth Escape, Orbital Insertion, Lunar Transfer
Trajectory Injection, and Powered Descent & Lunar Landing. By acknowledging these challenges, we can
prioritize specific operational hurdles and develop diverse solutions for various mission aspects, particularly those
related to orbital mechanics. We will use GMAT to translate our design thinking solutions into a testable format.
This powerful software is designed specifically for simulating spacecraft trajectories and enables us to create a
virtual prototype for the critical phases of the lunar descent mission. This comprehensive virtual testing allows us
to assess and refine our design before finalization. This iterative approach promises a more nuanced perspective
on lunar lander design, prioritizing efficiency and functionality. By following the design thinking framework; this
report aims to develop a mission plan that optimizes the spacecraft's journey and paves the way for future, cost-
effective lunar exploration endeavors.

2. Background

This section outlines the fundamental scientific and design principles that underpin a successful lunar lander
mission. These principles can be broadly categorized into two main areas: rocket stability and orbital mechanics.

2.1 Rocket Stability

Rocket stability is a fundamental principle for a successful lunar landing mission. Newton's Second Law
provides the foundation for understanding the forces acting on a rocket during flight, while the rocket equation
and kinematic motion allows us to analyze how to achieve and interpret the resulting motion and trajectory. This
understanding will enable engineers to optimize factors like nose cone design to enhance aerodynamic
performance. Strategic alignment of the center of mass and center of pressure is also crucial for maintaining
stability. These factors, alongside proper control systems, ensure controlled ascent and accurate trajectory, which
is essential for any space mission.

2.1.1 Newton's Second Law

Thrust T T

Figure-2 Rocket Propulsion Diagram (Byjus, n.d.)

Our journey into space flight begins with the fundamental exploration of motion itself. Specifically,
Newton's Second Law of Motion:

F=m=xa 1)

Equation (1) provides the "why" of motion, serving as the foundation for understanding the forces that govern
rocket propulsion. This law states that the net force (F) acting on an object is equal to its mass (m) multiplied by
its acceleration (a). In simpler terms, the force acting on an object determines how much that object speeds up or
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slows down. F = m * a is crucial for understanding and achieving rocket stability. It allows us to understand
and predict how various forces acting on the rocket — thrust, gravity, and drag (the aerodynamic force opposing
the rocket's motion through the air, as depicted in Figure 2) — influence its movement and ultimately, its ability to
maintain a desired trajectory.

To maintain a desired trajectory, thrust—the primary forward-acting force generated by expelling propellant
through the rocket engines—must overcome all opposing forces, particularly weight and drag, during the critical
ascent phase. If thrust fails to exceed these opposing forces, the rocket may experience reduced acceleration,
increased aerodynamic heating, deviations from the planned trajectory, or even failure to reach orbit. To mitigate
these risks, engineers prioritize optimizing both the thrust-to-weight and thrust-to-drag ratios in rocket design and
mission planning.

2.1.2 The Tsiolkovsky (Rocket) Equation

Building on the concept of thrust as the driving force behind rocket motion, we turn to the Tsiolkovsky Rocket
Equation—a cornerstone of rocketry that expands on Newton’s Second Law. Newton's law establishes that a force
acting on a mass produces acceleration, and in rocketry, this force is generated by expelling propellant. As fuel is
consumed during flight, the rocket’s mass decreases, resulting in increased acceleration for a constant level of
thrust. This dynamic interplay is important for understanding how rockets achieve the velocities needed for space
travel. The Tsiolkovsky Rocket Equation mathematically expresses this relationship as:

Av = v In(mg/my) (2)
where:

e Av represents the total velocity change that the rocket achieves. It is the key value used to calculate how
much Av is needed to complete specific maneuvers.

e 1, is the speed at which the exhaust gases leave the rocket’s propulsion system (measured relative to the
rocket). As displayed in the following equation, it depends on the specific impulse (Isp) of the engine
and the gravitational constant. Higher exhaust velocity allows for more efficient use of fuel, providing a
greater change in velocity for a given amount of propellant.

= Isp *Jo (3)

e I, is the specific impulse of the rocket's engine (a measure of how efficiently the rocket uses fuel).
e g, isthe standard gravitational acceleration on Earth (9.81 m/s2).

e my is the initial mass of the spacecraft, including fuel.

e myis the final mass of the spacecraft after fuel has been expended.

This equation is essential for calculating how much 4v is available for maneuvers, determining how much of
the rocket's initial mass must be allocated to fuel, and assessing how efficiently that fuel is used.

The rocket equation also directly impacts the thrust-to-weight ratio, a critical parameter for rocket
performance. As the rocket's mass decreases with fuel consumption, the thrust-to-weight ratio improves, allowing
the vehicle to accelerate more effectively. This improvement is especially crucial during the ascent phase, where
sufficient thrust must overcome gravity and drag. A higher thrust-to-weight ratio not only ensures better
acceleration but also reduces the time the rocket spends in high-drag regions of the atmosphere, thereby improving
overall efficiency.

By providing a framework for understanding the relationship between mass, thrust, and velocity, the rocket
equation informs key design decisions, such as optimizing fuel usage, selecting engine specifications, and
balancing payload capacity. These factors are fundamental to achieving the desired trajectory and ensuring the
rocket's ability to overcome the opposing forces discussed earlier.

AAJ 4-2 (2025) 886-910 3



AAJ.11.2106-2508

2.1.3 Kinematic Motion

While Newton's Second Law provides the fundamental "why" of motion, and the rocket equation quantifies
the "how" of changing that motion through propellant expulsion, a complete understanding of a rocket's trajectory
requires a multi-disciplinary approach.

As discussed previously, the Tsiolkovsky Rocket Equation is a cornerstone. It relates the change in velocity of
a rocket to its initial mass, final mass, and exhaust velocity. By optimizing the parameters in this equation,
engineers can design rockets that achieve the necessary Av for various space missions. However, the equation
doesn't directly address how the rocket moves under the influence of forces.

This is where kinematic motion equations come in. They describe the motion of an object experiencing
constant acceleration, like a rocket during its powered ascent phase. These equations, like:

v = vy + at (final velocity = initial velocity + acceleration X time 4

Ax = Y%(vy + v)t (displacement = average velocity X time) (5)
Ax = vt + Yeat® (displacement = initial velocity X time + % X acceleration X time®) (6)
v? = vo® + 2adx (final velocity2 = initial velocity2 + 2 X acceleration X displacement) (7)

allow us to analyze how the thrust-to-weight ratio impacts a rocket's trajectory and ascent profile. For instance, a
higher T/W ratio translates to greater acceleration (a) in the kinematic equations. This higher acceleration results
in a faster increase in velocity (v) and a steeper ascent profile (4x) during powered flight.

Calculating the rocket's position and velocity at different times based on its acceleration (derived from T/W)
gives us valuable insights into its behavior. This information is crucial for optimizing the rocket's design and
trajectory to achieve the desired flight path.

2.1.4 Nose Cone Optimization

In terms of achieving an optimal thrust-to-drag ratio during launch, one strategy is to streamline the vehicle's
shape, particularly the nose cone, where air pressure is highest. This is because drag is directly affected by the
surface area of the vehicle in contact with the air. The drag equation

Drag = Y density = reference area * drag coef ficient = velocity? (8)
highlights this relationship, where the reference area is often the cross-sectional area of the nose cone.

However, drag is not solely dependent on surface area. It also increases significantly with the velocity of the
vehicle relative to the air. Therefore, the challenge lies in balancing these two factors.

The shape of the nose cone, in conjunction with the vehicle's velocity, plays a crucial role in the formation of
shockwaves as the vehicle reaches hypersonic speeds. Together, these factors dictate whether the shockwave
remains attached or becomes detached, impacting aerodynamic heating, drag (as described by the equation), and
overall vehicle stability.

Obligue Shock

Figure-3 Oblique Shock (Ansys Innovation Courses, n.d.)
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Due to their geometry, sharp nose cones experience an attached shockwave, meaning the shockwave attaches
directly to the tip of the nose cone (Figure 3). While this form of shock offers the benefit of presenting a smaller
profile to the oncoming air, potentially reducing drag at lower speeds, at hypersonic speeds, the air cannot
smoothly follow the sharp point. This leads to flow separation—the inability of the airflow to stay attached to
the cone surface. The consequences of flow separation include a more turbulent wake, increased drag, and
increased heating.

Detached Bow Shock

Figure-4 Detached Bow Shock (Ansys Innovation Courses, n.d.)

On the other hand, spherically blunt nose cones experience a detached shockwave, also known as a bow shock.
As depicted in Figure 4, bow shocks are located further ahead of the cone. This detached bow shock formation,
in comparison to sharp cones, allows for a more gradual deflection of airflow, which translates to lower drag on
the launch vehicle. This reduction in drag can help maintain higher velocities during the critical phases of flight.
Additionally, while a bow shock still creates a region of high pressure and temperature, the larger surface area of
a blunt nose cone helps distribute the heating more evenly, reducing the peak intensity at the stagnation point.

In summary, while sharp nose cones might offer a slight advantage in drag at very low speeds, their limitations
at hypersonic speeds make them unsuitable for launch vehicles. Despite having a larger frontal area, spherically
blunt nose cones offer significant advantages in managing drag, and thermal loads, and maintaining stable airflow
during the critical launch phase. This is why more than 99% of launch vehicles are designed with these types of
nose cones.

2.1.5 Centering Forces

The thrust-to-drag ratio is also dependent on the relationship between the vehicle's center of pressure (CoP)
and center of mass (CoM).

A rocket's CoM is the point where its mass is balanced, representing the average location of its overall mass
distribution, including components such as the payload, fuel, and structural elements. This dynamic point shifts
during flight as fuel is consumed, affecting the rocket's stability and control1. The CoM also serves as the point
around which the rocket naturally rotates if subjected to external forces, making its position critical for maintaining
a stable trajectoryl.

The CoP is a theoretical point representing the average location of aerodynamic forces, such as drag, which
arise from the interaction between the rocket's surface and the surrounding airflow. It is referred to as a theoretical
point because aerodynamic forces are not uniformly distributed across the rocket's surfacel. For example, as
discussed earlier, the nose cone, which directly faces the airflow, experiences high pressure, while this pressure
diminishes along the rocket's body.

The CoP's position relative to the CoM plays a vital role in determining the rocket's stability during flight, as
it influences how the rocket responds to aerodynamic forces and external disturbances. Understanding and
managing the CoP and CoM are essential for ensuring a controlled and stable ascent.
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Figure-5 Centering Forces (Finio, 2023)

As displayed in Figure 5, for a rocket to be stable, the CoP must be positioned behind the CoM along the
flight path. This alignment ensures that any aerodynamic forces will produce a restoring moment that returns the
rocket to its intended orientation if it deviates from its flight path. Conversely, if the CoP is in front of the CoM,
disturbances created by aerodynamic forces will create a torque that amplifies any deviations, leading to
instability.

To ensure the CoP is correctly positioned relative to the CoM, engineers often add fins or other aerodynamic
surfaces to the lower part of the rocket to move the CoP rearward. Additionally, they adjust the shape of the rocket
and strategically place components such as fuel tanks, engines, and payloads within the rocket.

In conclusion, in conjunction with optimizing the nose cone design, understanding the rocket's center of
gravity, and centering forces, kinematic modeling plays a crucial role in achieving a stable flight path. By carefully
balancing the aerodynamic forces acting on the vehicle, we can ensure that the flight remains stable and controlled,
even at high speeds

2.1.6 Exercise 1: Rocket Trajectory Prediction and Stability Analysis

With a fully optimized and stable vehicle, we can now proceed to the critical task of calculating its launch
trajectory. By considering factors such as the vehicle's mass, gravitational constant, thrust, nose cone diameter
(to determine drag), drag coefficient, and air density, we can compute essential trajectory parameters at various
stages of the ascent process. These include:

o Initial Velocity: Essential for overcoming gravity and reaching the target orbit.
e Altitude: Determines atmospheric drag and gravitational forces.

o Drag Force: Opposes the rocket's motion, increasing with velocity and altitude.
e  Gravitational Force: Pulls the rocket towards Earth.

e Net Force: The combined effect of thrust, drag, and gravity.

e Acceleration: The rate of change of velocity.

e Net Velocity: The overall speed and direction of the rocket.
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Understanding these parameters is crucial for making timely adjustments to the trajectory, navigation, and
mission objectives, optimizing fuel usage and performance, and enabling precise targeting for orbital
maneuvers, planetary landings, or scientific observations, ensuring mission goals are met effectively.

Consider the following example: For a launch vehicle with a mass of 10 kg, a thrust of 1000 Newtons, a nose

cone diameter of 0.1 meters, a drag coefficient of 0.45, and an air density of 1.225 kg/m3, we can calculate these
trajectory parameters to determine its performance and success in achieving orbit.

Parameters

Trajectory Parameters

Mass 10 Time Initial vV Altitude D g Fnet anet vnet
Thrust 1000 0.1 0 0 0 98 902 90.2 9.02
g-Constant 9.8 1 9.02 4.059 0.175317 98 901.8247 90.18247 B81.16422
Diameter 0.1 2 90.18422 53.66111 17.52561 98 884.4744 88.44744 88.44744
Area 0.00785 3 178.6317 188.0691 68.75889 98 833.2411 83.32411 83.32411
Cd 0.45 4 261.9558 408.3628 147.8659 98 754.1341 75.41341 75.41341
Density 1.22 5 337.3692 708.0252 245.2578 98 656.7422 65.67422 65.67422

Figure-6 Calculating Trajectory Parameters
Initial Calculations:

1. Initial State: At t=0.1 seconds, the rocket is stationary with zero initial velocity, altitude, and drag.
2. Weight Force: Calculate the constant weight force acting on the rocket by multiplying its mass by the
Earth’s acceleration.

E, =m*9.81m/s2 9
3. Net Force: Determine the net force acting on the rocket at each time step using the equation:
Net Force = Thrust Force — Weight Force — Drag Force (10)

4. Net Acceleration: Calculate the acceleration using Newton's Second Law (Equation (1)).
5. Net Velocity: Determine the net velocity by multiplying the net acceleration by the time interval.

Viet = Apet ¥t (12)
Iterative Calculations:

Having solved data at t = 0.1 seconds, we now have a solid foundation for our launch simulation. For the
remaining time intervals (t = 1-5 seconds), we will follow a structured iterative approach:

1. Initial Velocity: Use the final velocity from the previous time step as the initial velocity for the current
time step.
2. Calculate Altitude: Determine the altitude using the average velocity over the time interval:

Altitude = (Vo + Vier) / 2) * (t —to). (12)

3. Calculate Drag Force: Compute the drag force based on the initial velocity, air density, reference area,
and drag coefficient (Equation (9)).

4. Calculate Net Force: Subtract the weight and drag forces from the thrust force to determine the net
force acting on the rocket (Equation (10)).

5. Calculate Net Acceleration: Use Newton's Second Law (Equation (1)) to find the acceleration resulting
from the net force.

6. Update Velocity: Calculate the net velocity for the current time step by multiplying the net acceleration
by the time interval by the initial velocity (Equation (11)).

AAJ 4-2 (2025) 886-910 7
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Figure-7 Data Interpretation

The graph above illustrates the calculated trajectory of the rocket during the first seconds of its ascent. At t=5s
and an altitude of 708.02 m, air resistance is significant and increases with velocity, requiring the rocket to
generate sufficient thrust to overcome drag and gravity. As fuel is consumed, the rocket’s mass decreases, which
would typically lead to increased acceleration. However, during this phase, acceleration might decrease due to the
rapidly increasing drag force, which grows quadratically with velocity in the dense lower atmosphere.
Additionally, if the thrust remains constant while the opposing forces (drag and gravity) increase faster than the
reduction in mass, the net force acting on the rocket decreases. This, coupled with potential engine throttling to
manage structural stress, could lead to a temporary reduction in acceleration despite the reduction in mass.

As Time Progresses:

Initial Velocity: The rocket’s velocity increases steadily as thrust overcomes drag and gravity.
Altitude: The altitude increases at an accelerating rate as the rocket climbs higher, eventually moving
into thinner atmospheric layers where drag decreases.

Drag: As the rocket gains altitude and enters regions of lower air density, the drag force begins to
decrease despite increasing velocity.

Net Force: As drag diminishes at higher altitudes and the rocket’s mass decreases, the net force
increases, allowing for greater acceleration.

Net Acceleration: Net acceleration begins to increase as the rocket burns fuel, reducing its mass, and as
drag lessens with altitude.

Net Velocity: The velocity increases steadily over time, accelerating faster as drag decreases and a larger
proportion of thrust contributes to forward motion. By the time the rocket exits the lower atmosphere,
velocity growth becomes more pronounced.

This progression highlights the interplay between forces acting on the rocket during its ascent, illustrating how it
transitions from battling drag and gravity in the dense atmosphere to accelerating efficiently in thinner air.
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By analyzing these parameters throughout the launch, engineers can fine-tune the rocket's flight path, ensuring a
smooth ascent and a flawless transition into its intended parking orbit in low Earth orbit (LEO). which will serve
as an intermediate stage before the final transfer to the Moon's orbit.

2.2 Orbital Mechanics

A successful lunar landing mission hinges on both a stable and well-designed rocket and a deep understanding
of orbital mechanics. With the spacecraft on its way to its parking orbit, we can now begin analyzing the necessary
orbital maneuvers that guide the spacecraft on its journey to the lunar celestial body. Orbital mechanics, the
science governing object motion in space, provides the tools to calculate these trajectories. Concepts such as
orbital elements, Kepler’s laws of motion, orbital insertion, escape velocity, and orbital transfers become crucial
in determining the maneuvers required for the spacecraft to escape Earth's gravity, reach the Moon's vicinity, and
ultimately land safely on its surface.

2.2.1. Orbital Elements

An orbit is “an imaginary path followed by an object while it is moving under the influence of any other object”.
As shown in Figure 8, key parts and attributes of an orbit include:

North Celestial Pole 4 z Satellite

7
& Perigee
/
/
AL Orbit
/
b N / .
< N |y 0] Yy
>
N\ /
S “d AL~

— — — — —

N Equatorial plane

Figure-8 Orbital Elements (Luo, Q., Peng, W., Wu, G., Xiao, Y., 2022)

e Semi-Major Axis (a): The semi-major axis is the longest radius of an elliptical orbit, extending from
the center of the ellipse to the farthest point on the orbit. For a circular orbit, the semi-major axis is
simply the radius.

e Eccentricity (e): The eccentricity describes the shape of the orbit, specifically how elongated or
"stretched out" it is. An orbit with e = 0 is perfectly circular, while an orbit with 0 < e < 1 is elliptical,
and e = 1 is parabolic.
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Figure-9 Periapsis vs. Apoapsis (Vij, 2022)

o Periapsis (or Perigee for Earth orbits): Per Figure 9, the point of periapsis is the closest
point of the orbit to the central body.

o Apoapsis (or Apogee for Earth orbits): As shown in Figure 9, the apoapsis is the farthest
point from the central body.

¢ Inclination (i): The inclination is the angle between the orbital plane and the equatorial plane of the
central body (for example, Earth's equator).

o Longitude of Ascending Node (2): The longitude of the ascending node is the angle between a
reference direction (such as the vernal equinox) and the ascending node, which is the point where the
orbit crosses the equatorial plane from south to north.

e Argument of Periapsis (®): The argument of periapsis defines the orientation of the ellipse within the
orbital plane. It measures the angle between the ascending node and the point of periapsis.

e True Anomaly (v): The true anomaly is the angle between the periapsis and the current position of the
orbiting body, measured at the central body

Orbits vary in size and shape and can be elliptical, parabolic, or circular. For our mission, we will focus on
circular orbits. With certain orbital elements, such as eccentricity, periapsis/apoapsis, and the argument of
periapsis are less applicable to circular orbits as the object maintains a constant distance from the central body.

Additionally, orbits can be either bounded or unbounded. Bounded orbits, like circular and elliptical orbits,
are closed paths that repeat. Unbounded orbits, such as parabolic and hyperbolic orbits, are open paths that do
not repeat.

2.2.2. Johannes Kepler’s Laws of Planetary Motion

With the fundamentals of orbits established, we can redirect our attention to Kepler's laws. Kepler’s three laws of
planetary motion describe how objects move in orbit, based on careful observations of the planets around the Sun.
As depicted in the following figure, these laws provide fundamental insights into orbital mechanics and are
essential for understanding the behavior of orbiting bodies.

First Law Second Law Third Law
Tl
Planet " Planet
9 r . T ')
A, " E4
A, a a
.............................. - eesssessessesesnesnesacbaaats b oo eee Avepujrmmernfach asnacs
F F; o 2 F
Sun (F,) Sun (F)) 9 Sun (F,) ‘e
o i
4

Figure-10 Kepler's Law of Planetary Motion (Soumyadeep, 2024)

1. Kepler’s First Law (Law of Ellipses): All planets or satellites move in elliptical orbits with the Sun (or
the central body) at one of the two foci.

2. Kepler’s Second Law (Law of Equal Areas): A line connecting a planet (or satellite) to the Sun (or the
central body) sweeps out equal areas at equal times. This law is reflected in the changing orbital speed
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of the object. The body moves fastest at periapsis (A1) and slowest at apoapsis (A2). This variation in
speed is directly linked to the semi-major axis of the orbit and the total orbital energy.

3. Kepler’s Third Law (Law of Harmonies): The square of the orbital period (T) of a planet is directly
proportional to the cube of the semi-major axis (a) of its orbit (T2 « a3) which means that if the size of
an orbit (through the semi-major axis) is known, you can determine the orbital period. The larger the
orbit (greater a), the longer the period.

3.2.3. Orbital Insertion

Using our newfound knowledge of orbital elements and Kepler's Laws, we can now discuss the critical process
of orbital insertion. Orbital insertion is the process of placing a spacecraft into a specific orbit around a celestial
body. To achieve this, the spacecraft must:

1. Attain the necessary orbital velocity: This requires a significant acceleration imparted by the rocket
engines. Orbital velocity dictates the speed at which the spacecraft orbits its parent body (Earth).
Maintaining this precise velocity is crucial for a stable orbit.

For elliptical orbits, the orbital velocity varies at different points in the orbit. It is highest at periapsis and lowest
at apoapsis. However, in the case of circular orbits, orbital velocity is equal to

v = V(GM/r) (13)
where:

e v isthe orbital velocity

e G is the universal gravitational constant/ centrifugal force (approximately 6.674 x 10-11 N m2/kg?)

e M is the mass of the central body (e.g., Earth)

e risthe radius of the orbit (distance from the center of the central body) depending on the mass of the
central body and the radius of the orbit.

This equation shows that the orbital velocity depends on the mass of the central body and the radius of the orbit.
A larger central body or a smaller orbital radius will result in a higher orbital velocity.

2. Achieve the desired altitude: This is accomplished through the continuous burning of the rocket's
engines, propelling it upwards through the atmosphere.

3. Establish the correct orbital inclination: The rocket's trajectory must be carefully controlled to achieve
the desired inclination of the orbit relative to the Earth's equator.

4. Execute the orbital insertion burn: At the apogee of the ascent trajectory, the spacecraft's engines are
fired for a precise duration, providing the final velocity increment needed to achieve the desired circular
orbit.

The orbital insertion process typically culminates in the establishment of a parking orbit, which allows for
precise timing and alignment of subsequent burns, optimizing efficiency and increasing the likelihood of mission
success.

2.2.4. Escape Velocity

Given the spacecraft is in its parking orbit, we can now apply the fundamental concepts of orbital mechanics to
guide its transition from the inner parking orbit to its target orbit. To initiate this transition, it is essential to
understand the velocity requirements for escaping or transferring between orbits.

Escape velocity is the minimum speed needed for an object to escape the gravitational pull of a massive body. If
an object reaches an escape velocity, it can overcome the gravitational force and move indefinitely away from the
body1. The formula for escape velocity is

Vescape — \/(ZGM/T) (14)
where:

®  Vgcape IS the escape velocity
e G isthe universal gravitational constant
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e M is the mass of the celestial body
e risthe distance from the center of the celestial body

For Earth, the escape velocity is approximately 11.2 km/s (11200 m/s). This means that a spacecraft must reach
this speed to break free from Earth's gravitational pull and travel into deep space. Escape velocity depends on the
spacecraft's altitude: The higher the parking orbit, the lower the escape velocity, because Earth's gravitational
influence weakens with distance.

2.2.5. Orbital Transfers

With the vehicle meeting its escape velocity, we can begin the orbital transfer—a crucial process for moving
a spacecraft from one orbit to another, typically around the same central body. Orbital transfers involve controlled
changes in the spacecraft’s velocity to adjust its orbital energy and trajectory, enabling the transition between
orbits. The efficiency of a transfer is closely tied to delta-v, to minimize fuel consumption while achieving mission
goals.

Efficient transfers require precise timing and alignment with the target orbit, as these factors ensure the
maneuver’s success and fuel economy. While various techniques such as bi-elliptic and low-thrust transfers exist,
in this scenario—where the spacecraft transitions between two circular orbits—a Hohmann transfer is the most
appropriate and commonly used methodl. This maneuver, discussed in the following section, exemplifies how
orbital mechanics and fuel optimization come together to achieve mission objectives.

2.2.5.1. Hohmann Transfer
V,+ AV, =Vout

&
<

Figure-1 Hohmann Transfer Orbit (Space Technology and Aeronautical Rocketry, n.d.)

The Hohmann transfer, as shown in Figure 11, is a widely used transfer maneuver used to transfer spacecraft
from LEO to the Moon, Mars, and asteroids (Space Technology and Aeronautical Rocketry, n.d.). The
Hohmann transfer calculates the delta-v needed for orbital changes when it comes to moving from one circular
orbit to another. It consists of two burns to provide the required velocities and consists of the following steps:

e First orbital burn: A burn is performed at the perigee of the initial circular, parking orbit to raise the
spacecraft's apogee, transforming the circular orbit into an elliptical one.

e Second orbital burn: At the apogee of the newly formed elliptical orbit, a second burn is performed to
circularize the orbit at the desired altitude, such as a lunar transfer orbit.

This sequence of burns allows the spacecraft to efficiently transfer from its initial parking orbit to the
desired target orbit.

2.2.6. Exercise 2a: Calculating Orbital Parameters

Expanding on the success of a fully optimized and stable vehicle that has reached its trajectory, this exercise
focuses on the precise calculations required for orbital maneuvers. Using Earth's parameters, such as its
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gravitational constant (6.6743E-11Nm2/kg2) and radius (6378000 m), along with the target altitudes for inner and
outer orbits, we will determine the orbital velocities required at each stage and the parameters of the transfer orbit.
These calculations are essential for planning the trajectory from an initial circular orbit to a higher circular orbit,
requiring a detailed understanding of orbital mechanics and the principles governing orbital transfers.

In this exercise, we will use established formulae and techniques to:

e Calculate the velocities for the inner and outer circular orbits based on their respective altitudes.

e Derive the characteristics of the transfer orbit, including its semi-major axis, eccentricity, and the
velocity changes required at the points of departure and arrival.

e Evaluate how Earth's gravitational parameters influence the transfer trajectory and ensure a smooth
transition between orbits.

By mastering these calculations, we gain the tools necessary to design efficient orbital maneuvers for missions
involving satellite deployment, interplanetary transfers, or rendezvous operations.

Consider the following example: The spacecraft LEO at 400,000 m above the Earth's surface and needs to be
transferred to a target orbit at 36,000,000 m:

Parameters VELS
G 6.6743E-11 Nm2/kg2
Mass 5.9722E+24 kg
Radius 6378000 m
Gravitational Acceleration 9.81 m/s2

Inner Orbit

Altitude 400000 m
Radius 6778000 m
Vin 7668.6559 m/s
Altitude 36000000 m
Radius 42378000 m
Vout 3066.90134 m/s
che
Perigee 6778000 m
Apogee 42378000 m
Vp 10069.6925 m/s
Va 1610.56152 m/s
Delta-Vp 2401.03662 m/s
Delta-Va 1456.33982 m/s
a transfer 24578000 m

Figure-12 Calculating Orbital Parameters
Calculate Inner Orbit Parameters:

1. Define the Altitude: The height of the spacecraft’s orbit above the Earth’s surface (400,000 m).
2. Calculate the Orbital Radius (r;,): Add the Earth’s radius to the altitude:

Ty = R + altitude (15)

3. Determine the Velocity (v;,): Use the orbital velocity formula to calculate the velocity required to
maintain a stable inner orbit:

Vin =VG - M - 2/, — 1/73) (16)
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Calculate Outer Orbit Parameters:

1. Define the Outer Orbit Altitude: Choose the desired altitude for the outer orbit (36,000,000 m).
2. Calculate the Outer Orbit Radius (r,,,): Add the inner orbit radius to the outer orbit altitude:

Tout = Tip + outer orbit altitude a7

3. Determine the Outer Orbit Velocity (v,,,): Use the orbital velocity formula to calculate the velocity
required to maintain the outer orbit:

Vout = \/G M- (2/Tour — 1/Tout) (18)
Calculate Transfer Orbit Parameters (Hohmann Transfer):

1. Define Perigee and Apogee:
o Perigee: Closest point in the transfer orbit, equal to the radius of the inner orbit.
e  Apogee: Farthest point in the transfer orbit, equal to the radius of the outer orbit.

2. Calculate the Transfer Orbit Radius (7'yqnsfeer): Find the average of the perigee and apogee
distances:

rtransfter = (rperigee + rapogee)/z (19)

3. Determine Velocity at Perigee (v,): Use the transfer orbit velocity formula to find the
spacecraft’s velocity at perigee:

Vp = \/G -M - (z/rperigee - 1/Ttransfter) (20)
4. Determine Velocity at Apogee (v,): Similarly, calculate the spacecraft’s velocity at apogee:
o= \/G M - (z/rapogee - 1/Ttransfter) (21)

5. Calculate Delta-v Requirements:
e Delta-v at Perigee: The change in velocity required to enter the transfer orbit.
o Delta-v at Apogee: The change in velocity required transition into the outer orbit.

This step-by-step approach provides clear insights into orbital dynamics, emphasizing the relationships
between gravitational forces, orbital velocities, and delta-v requirements.

By calculating each parameter, this exercise demonstrates the critical steps involved in planning orbital
maneuvers and reinforces the practical application of orbital mechanics in mission planning.

2.2.7. Exercise 2b: Calculating Spacecraft Parameters

Spacecraft Parameters

Thrust 40000
Isp 300
Mf 1200
Mo 2714.06
Mp 1514.06
Burn time 111.3969645

Figure-13 Calculating Spacecraft Parameters

Given the required delta-v for the perigee burn (2401.03 m/s) calculated in the previous section, a specific
impulse (Isp) of 300 seconds, and a final spacecraft mass of 1200 kg, we can use the rocket equation to determine
the initial mass (m0), the propellant mass (mp), and the burn time needed for the first burn.

1. Rearrange the Rocket Equation (Equation (2)) to Find Initial mass (m0):

my = mg - exp(4v/v,)
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2. Calculate the Propellant Mass (mp): The propellant mass is the difference between the initial mass
and the final mass:

m, =my—ms (22)
3. Determine the Burn Time:
To calculate the burn time, we first determine the mass flow rate using the thrust and exhaust velocity
(Mass Flow Rate = Thrust/v,) (23)
Now, the burn time can be found by dividing the propellant mass by the mass flow rate
(Burn Time = m,/Mass Flow Rate) (24)

By performing similar calculations for the apogee burn, we can determine the total propellant mass required
for the entire Hohmann transfer maneuver. This analysis allows us to assess the feasibility of the mission and
optimize the spacecraft's design and trajectory.

3. Mission Design and Methodology

With the fundamentals of spaceflight established, we can now begin to plan our lunar lander mission. Our goal
is to launch a 1000 kg payload to the Moon using a two-stage vehicle. This mission can be broken down into three
primary phases:

1. Sky is Not the Limit: This phase focuses on launching the spacecraft from Earth and ascending beyond
its atmosphere. The rocket's engines must generate sufficient thrust to overcome Earth's gravity and
propel the spacecraft into space. To analyze this process, we will use Excel simulations to model the
rocket's ascent, accounting for factors such as mass reduction, thrust, aerodynamic drag, and gravitational
forces.

2. To the Moon and Never Back: Once the spacecraft has escaped Earth's gravity, it will be inserted into
a parking orbit 300 km above Earth. Subsequent maneuvers, such as a Hohmann transfer, will propel the
spacecraft toward the Moon. We will employ tools like GMAT to simulate these orbital maneuvers and
calculate the required delta-v.

3. A Giant Leap: Upon reaching the Moon, the spacecraft will perform a series of maneuvers to slow down
and achieve a soft landing on the lunar surface.

By carefully planning and executing these phases, and leveraging tools like Excel and GMAT, we can
successfully deliver our payload to the Moon.

3.1. Phase 1: Sky is Not the Limit

The initial phase focuses on evaluating the launch vehicle's capabilities and the performance of its propulsion
systems in propelling the spacecraft beyond Earth's atmosphere. This stage incorporates design strategies to
optimize the launch trajectory and minimize fuel consumption, ensuring efficient and effective ascent.

3.1.2. Objectives

e Design a launch trajectory that safely propels the spacecraft beyond Earth's atmosphere and establishes
a stable LEO.

o Determine the required delta-v (change in velocity) for this maneuver, considering the interplay between
the spacecraft's thrust, gravitational pull (weight), and atmospheric drag.

e  Optimize the burn profile to minimize fuel consumption while ensuring mission success.
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3.1.3. Calculations and Simulations

Second Stage

Parameters Value Parameters Value
Wet Mass 420000 Dry Mass 4000
Dry Mass 30000 Propellant Mass 92000
Propellant Mass 350000 Wat Mass 96000
Diameter 3
Area 7.071428571 Parameters Value
Cd 045 First stage 420000
p 300 Second stage 96000
hrust 9564750 Payload 1000
Burn Time 120 Total Mass 517000
Mass Flow Rate 3250 Mass at the end of 1st burn out 127000
Parameters Value
Density 1.22
Gravitational Acceleration 9.81
Figure-14 Phase 1: Calculating Launch Vehicle Parameters
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Figure-15 Phase 1: Trajectory Simulation
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Figure-16 Phase 1:
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341706825

338518575

3353303.25

3321420.75

3280538 25

325765575

322577325

315289075

3162008.25

313012575

3058243.25

3066360.75

3034478 25

300259575

297071325

2938830.75

2906548 25

2875065.75

2843183 25

2811300.75

2779418 25

274753575

271565325

268277075

2651888.25

2620005.75

2588123 25

2556240 75

2524358 25

245247575

F31278.8392
FeEED1.1261
207587.8052
247655.7638
882036.5004
931730.4316
975786.4971
1021197.103
10e7589.625
1116181.845
1165790.905
1216833 251
1269324577
1322279773
1378712 857
1435626962
1454064 183

1554005.61
1615471 215
1578469 818
1742008024
1E09094.935
1E76722.7c8
1945525 734
2016676.066
2038584.021
2162848 455
2238266516
2315223531
2392743047

Figure-17 Phase 1: Trajectory Simulation (3)
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111 | 1559.428598 | 3301 573285 156575 | 153600075 | 5345232093 17.13885450 | 1713885459 | 1576 567
12 | 1576567453 | 3335 295051 152335 | 150411825 | 5456215187 1598624205 | 1698624205 | 1553 553
112 | 1593553635 | 3370.121148 150075 | 147223575 |5567335.212| 168261072 | 16.8261072 | 1710370
114 | 1710372802 | 3903 933497 146825 | 144035325 |s678512.026| 1665849633 | 16 65849632 | 1727 038
115 | 1727038253 | 3437.418101 142575 | 140847075 | 5789655124 15.42346045 | 15.42346345 | 1743 521
115 | 1743521758 | 3470.560065 140325 | 137658825 | 530070573 | 15.30110073 | 1630120073 | 1759.822
117 | 1758822885 | 3503 344637 137075 | 134870575 | 6011563 262 15.11147903 | 16.11147303 | 1775 934
118 | 1775934348 | 3535.75721¢5 133825 | 131282325 |e122140912| 152147083 | 153147083 | 1791 249
113 | 1721 84505¢ | 3557 783404 120575 | 122094075 |e232357.42¢| 15 71090800 | 15 71090809 | 1507 559
120 | 1807558964 | 3592 40002 127335 | 124905825 |6342127.004| 1550021398 | 15 50021398 | 1822 050

Figure-18 Phase 1: Trajectory Simulation (4)

To simulate the launch of a multistage rocket, we began by empathizing with the challenges faced by aerospace
engineers in designing and optimizing rocket trajectories. We understood the need to accurately model the
complex interplay between forces, mass, and energy during the launch process.

Next, we defined the problem as a multi-stage simulation that would track the rocket's position, velocity, and
acceleration over time. Key parameters, such as initial mass, thrust, specific impulse, and atmospheric conditions,
were identified as crucial inputs to the simulation.

To ideate a solution, we adopted a numerical integration approach, using a time-stepping method to calculate
the rocket's trajectory. We broke down the simulation into smaller time steps, updating the rocket's state variables
at each step based on the forces acting upon it.
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The prototype for this simulation was implemented in Excel. We developed a spreadsheet model that
incorporated the following steps:

1.
2.

3.
4.
5.

Initial Conditions: Defined the initial mass, thrust, specific impulse, and other relevant parameters.
Time-Step Calculation: Calculated the change in velocity and position at each time step based on the
net force and acceleration.

Mass Update: Accounted for the reduction in mass due to propellant consumption.

Atmospheric Drag: Incorporated the effects of atmospheric drag on the rocket's motion.
Gravitational Force: Considered the varying gravitational force as the rocket ascends.

By refining our model, we were able to test and learn from the simulation results. We analyzed the impact of
different parameters on the rocket's trajectory and identified potential areas for optimization.

This approach allowed us to develop a robust and accurate simulation tool that can be used to analyze various
rocket designs and mission scenarios.

3.1.3.1. Formulae

Rocket Equation (Equation (2))
Newton’s Second Law of Motion (Equation (1))
Area of a Circular Cross-Section

(A =mnd?/4) (25)
Thrust
thrust = (I, * my, * go)/burntime (26)

Mass Flow Rate (Equation (23))

Drag Force (Equation (8))

Kinematic Equations (Equation (4), Equation (5))
Staging Mass Relations (Equation (22)

3.2. Phase 2: Orbital Insertion & Trans-Lunar Injection (TLI)

Once Earth escape is achieved, the spacecraft needs to be inserted into a 300 km parking orbit. From the
parking orbit, a series of three orbit-raising maneuvers can be conducted. These maneuvers, planned and simulated
using GMAT software, incrementally increase the spacecraft's velocity to the required 10.8 km/s for Trans-Lunar
Injection (TLI).TLI will then propel the spacecraft on a trajectory toward the Moon.

3.2.1. Objectives

Establish a stable circular parking orbit at a targeted altitude of 300 km around Earth.

Perform any necessary orbital maneuvers to achieve the desired 300 km circular orbit, considering factors
like residual launch vehicle velocity and orbital plane adjustments.

Optimize the burn profile(s) for this maneuver to minimize propellant consumption while ensuring a safe
and efficient orbital insertion.

Conduct a series of three optimized orbit-raising maneuvers to reach the desired TLI apogee. Utilize
mission analysis tools to verify trajectory corrections.

Calculate the precise delta-v for TLI, considering the final orbit and desired lunar transfer trajectory.
Evaluate burn window opportunities and develop a preliminary fuel-efficient burn profile targeting 10.8
km/s injection velocity.
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3.2.2. Calculations and Simulations

Altitude 300000 EmthtuHMoon 384400000
Distance
Radius of Orbit 6678000 Perigee 6678000
Velocity 7725.859858 Apogee 384400000
Semi-Major Axis 195539000
vp 10832 32847
Dry Mass 1200 Va 188.1849363
Total Fuel 2248.248588 Delta-V required 3106.46861
1st Marneurver 2nd Maneuver TLI
Inputs Inputs Inputs
A A
Ap;)ge 15000000 pgge 18000000 nge 384400000
F 70000 F 70000 F 70000
Isp 300 Isp 300 Isp 300
Elliptical Orbit Elliptical Orbit
Vv 9088.6179 Vv 9331.3202 Vv 10832.328
P 43 P 9 P a7
Va 4046.2527 Va 3461.9198 Va 188.18493
08 28 63
Delta- 1362.7580 Delta- 242.70234 Delta- 1501.0081
Vp 85 Vp 68 Vp 78
3448.2485 2170.1923 1998.4025
Mo 88 Mo 17 Mo 19
Mf 2170.1923 Mf 1998.4025 Mf 1200
17 19
1278.0562 171.78979 798.40251
gz 71 e 78 . 89

Figure-19 Phase 2: Orbital Insertion and TLI Calculations

3.2.2.1. Parking Orbit

Figure-20 Phase 2: Parking Orbit (GMAT)

To initiate the lunar transfer, we first established a stable parking orbit at an altitude of 300 km. To achieve
this, we empathized with the need to accurately calculate the required delta-v for the orbital insertion burn,
considering factors like the initial orbital velocity and the desired altitude.
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Defining the problem involved identifying the specific parameters of the parking orbit, such as its semi-major
axis and eccentricity.

Ideating and prototyping the solution involved simulating the orbital insertion maneuver using GMAT as
displayed in Figure 20.

3.2.2.2. Maneuvers 1 and 2

Figure-21 Phase 2: Orbital Maneuvers

After establishing the stable parking orbit at 300 km, we initiated a series of orbital maneuvers to position the
spacecraft for lunar transfer. The first maneuver, as depicted in Figure 21, involved a precise burn to raise the
apogee of the orbit from 300 km to 15,000 km. This significantly elongated the orbit, positioning the spacecraft
for the next maneuver.

Subsequently, a second burn (not pictured) was executed to further raise the apogee to 18,000 km. This
maneuver brought the spacecraft closer to the desired trajectory for lunar transfer, setting the stage for the final,
critical burn.

To execute these maneuvers, we calculated the required delta-v, initial mass, propellant mass, and burn time
for each burn. By carefully considering factors like engine performance, fuel efficiency, and orbital mechanics,
we optimized the trajectory and ensured the spacecraft's successful transfer to the Moon.

3.2.2.3. Trans-Lunar Injection

Figure-22 Phase 2: TLI (GMAT)
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After the second burn in which the spacecraft achieved the raised orbit with an apogee of 18,000 km, the
final task was to execute the TLI burn (Figure 22). This maneuver allowed the spacecraft with a velocity of 10.8
km/s to overcome Earth's gravitational pull and establish its trajectory toward the Moon. In planning this
maneuver, we carefully accounted for the gravitational influences of both Earth and the Moon to ensure a
precise and efficient transfer trajectory. Given the tight fuel constraints, there was very little room for error,
making accurate calculations and execution critical to mission success.

3.2.2.4. Formulae

e Radius of Orbit (Equation (15))
e Velocity in orbit (Equation (16))
e Total Fuel (Equation (22))
e Radii of Perigee and Apogee
o rperigee = Tgarth partking orbit

o 7"apogee = TEarth—Moon distance

e  Semi-major axis

a= (rperigeerorbit apogee)/z (27)

o Elliptical Orbit Velocities (Equation (20), Equation (21))
e Initial and Final Mass

my = my * eAy/(Isp * Jo) (28)

e Burn Time

thurn = (Isp * o * mp)/T (29)
3.3. Phase 3: A Giant Leap

The final and most delicate phase involves the powered descent and landing on the lunar surface. With the
spacecraft positioned ~600m above the Lunar surface, design thinking is crucial in this phase for identifying

opportunities, such as leveraging lunar gravity, and addressing hazards in the lunar environment to ensure a safe
and controlled landing.

4.3.1. Objectives

e Design a controlled descent trajectory that safely guides the spacecraft from lunar orbit to a targeted
landing site on the Moon's surface.

o Develop a powered descent burn profile that optimizes fuel consumption while ensuring proper engine
throttling and deceleration for a soft lunar touchdown.
e Perform Science

4.3.2. Calculations and Simulations

Propulsion Parameter

Mo 1000 Isp 330
Delta-V 54.8640548
M final 983.1783248
M fuel 16.8216752
Mdot 1.402454154
Initial H 600 F 4535.536733

Gravitational
Acceleration
FinalH 212.5

1.62
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Figure-23 Phase 3: Spacecraft Parameters During Freefall

As exemplified in Figure 23, the lander initiates a controlled, free-fall descent from an altitude of 600 meters
to a critical altitude of 212.5 meters above the lunar surface. By using our understanding of the spacecraft’s
propulsion parameters, lunar gravity, and the desired landing altitude, we can calculate the necessary free-fall time
and velocity. This controlled descent minimizes fuel consumption while ensuring a safe and soft landing. Any
deviation from the planned trajectory or unexpected events during the descent could result in the loss of the
payload and compromise the mission's scientific objectives.

Landing Trajectory Parameters

Mg a

0 1000 1620 1.62 35.43303543 212.5

1 998.5975458 1617.728024 -2.92191 32.51112888 178.5279
2 997.1950917 1615.456049 -2.92829 29.5828346  147.4809
3 995.7926375 1613.184073 -2.9347 26.6481346  119.3655
4 994.3901834 1610.912097 -2.94112 23.70701079 94.18788
5 992.9877292 1608.640121 -2.94757 20.75944505 71.95465
6 991.5852751 1606.368146 -2.95403 17.80541915 52.67222
7 990.1828209 1604.09617 -2.9605 14.84491479 36.34705
8 988.7803668 1601.824194  -2.967 11.87791358 22.98564
9 987.3779126 1599.552218 -2.97352 8.904397081 12.59448
10 985.9754585 1597.280243 -2.98005 5.924346751 5.18011
11 984.5730043 1595.008267 -2.9866 2.937743977 0.749065
12 983.1705502 1592.736291 -2.99317 -0.055429935 -0.69209

Figure-24 Phase 3: Landing Trajectory Parameters

When the lander reaches an altitude of 212.5 meters, the engines ignite for a final burn to slow the descent and
ensure a soft landing. This phase, captured in Figure 24, depicts the final 12 seconds before touchdown. It is
evident from the figure that the lander is decelerating as it approaches the lunar surface, as indicated by the
decreasing altitude and velocity over time.

3.3.2.3. Deceleration/ Touchdown

Using high-precision timing and control of the lander's thrusters, the final phase of the descent aims to gradually
reduce the lander's velocity to zero at the precise moment of touchdown.
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3.3.2.4. Formulae

Altitude

H = (%)gt?
Velocity at end of fall

v=gt

Average Velocity

Vaverage = Vinitiai/2
Time

t= (2H)/v

Rocket Equation (Equation (2))
Thrust (Equation (26))

4. Conclusion

(30)

(31)

(32)

(33)

During my internship, | applied design thinking principles to optimize a lunar lander mission. By leveraging
my knowledge of rocket stability and orbital mechanics, | successfully navigated the design process, from
empathizing with the mission's objectives to testing and refining the lunar landing strategy. I utilized Excel and
GMAT to conduct a detailed simulation of the lander's mission, focusing on optimizing ascent, orbital maneuvers,
and landing trajectories to minimize propellant expenditure. This practical experience solidified my understanding
of aerospace engineering principles and the value of a user-centered approach to problem-solving
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