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Abstract: Analytical expressions in closed form of complete elliptic integrals of the first and second kind 

are obtained in terms of elementary functions. These expressions model the tabular values of integrals quite well, 

so they can be used for differentiation and integration, as well as for solving certain applied problems. When 

deriving these expressions in tunnel mathematics space, an additional dependence on the azimuthal angle φ as a 

parameter appears. Precise adjustment of this parameter allows reducing the error in modeling. 

Table of Contents 

1. Introduction ......................................................................................................................................................... 1 
2. Brief concepts ..................................................................................................................................................... 1 
3. Theory ................................................................................................................................................................. 3 
4. Result and Discussion ......................................................................................................................................... 7 
5. Conclusion ........................................................................................................................................................ 21 
6. References ......................................................................................................................................................... 22 
7. Conflict of Interest ............................................................................................................................................ 22 
8. Funding ............................................................................................................................................................. 22 
 
1. Introduction 

In mathematics, some goals are unachievable by conventional methods. One such goal is to represent complete 

elliptic integrals of the first and second kind in term of elementary functions. A new mathematical tool will be 

effective only if it can solve such a problem. As we will see below, the use of the apparatus of tunnel mathematics, 

based on the spatial theory of functions of a complex variable, allows us to achieve success. 

 

2. Brief concepts 

2.1. Incomplete and complete elliptic integral of the first kind 

The incomplete elliptic integral of the first kind F [2, 3, 4, 5, 7, 8, 9] is defined as 

𝐹(𝑧, 𝑘) = ∫
𝑑𝑧

√1−(𝑘 sin 𝑧)2

𝑧

0
;         (1) 

where  

0 < 𝑧 <
𝜋

2
.           (2) 

This is Legendre's trigonometric form of the elliptic integral. 

In expression (1) 𝑧 is the amplitude; 𝑘 is the elliptic modulus. 

Elliptic integrals are said to be 'complete' when the amplitude 𝑧 =
𝜋

2
. The complete elliptic integral of the first 

kind K may thus be defined as 
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𝐾(𝑘) = ∫
𝑑𝑧

√1−(𝑘 sin 𝑧)2

𝜋

2
0

;         (3) 

or more compactly in terms of the incomplete integral of the first kind as 

𝐾(𝑘) = 𝐹 (
𝜋

2
, 𝑘).          (4) 

Plot of the complete elliptic integral of the first kind K(k) [11, 1,] is shown on Fig. 1. 

 

Figure-1. Plot of the complete elliptic integral of the first kind K(k). 

The complete elliptic integral of the first kind can be expressed as a power series [6, 10] 

𝐾(𝑘) =
𝜋

2
∑ (

(2𝑛)!

22𝑛(𝑛!)2)
2

𝑘2𝑛∞
𝑛=0 =

𝜋

2
(1 + (

1

2
)

2

𝑘2 + (
1∙3

2∙4
)

2

𝑘4 + ⋯ + (
(2𝑛−1)‼

(2𝑛)‼
)

2

𝑘2𝑛 + ⋯ ) ;  (5) 

where n!! denotes the double factorial. 

The complete elliptic integral of the first kind can be computed very efficiently in terms of the arithmetic–

geometric mean [1, 8]. 

2.2. Incomplete and complete elliptic integral of the second kind 

The incomplete elliptic integral of the second kind E [2, 3, 4, 5, 7, 8, 9] in Legendre's trigonometric form is 

𝐸(𝑧, 𝑘) = ∫ √1 − (𝑘 sin 𝑧)2𝑧

0
𝑑𝑧;        (6) 

where 0 < 𝑧 <
𝜋

2
. 

The complete elliptic integral of the second kind E is defined as 

𝐸(𝑘) = ∫ √1 − (𝑘 sin 𝑧)2
𝜋

2
0

𝑑𝑧;         (7) 

or more compactly in terms of the incomplete integral of the second kind as 

𝐸(𝑘) = 𝐸 (
𝜋

2
, 𝑘).          (8) 

Plot of the complete elliptic integral of the second kind E(k) [11, 1,] is shown on Fig. 2. 
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Figure-2. Plot of the complete elliptic integral of the second kind E(k). 

The complete elliptic integral of the second kind can be expressed as a power series [6, 10] 

𝐸(𝑘) =
𝜋

2
∑ (

(2𝑛)!

22𝑛(𝑛!)2)
2 𝑘2𝑛

1−2𝑛

∞
𝑛=0 =

𝜋

2
(1 − (

1

2
)

2 𝑘2

1
− (

1∙3

2∙4
)

2 𝑘4

3
− ⋯ − (

(2𝑛−1)‼

(2𝑛)‼
)

2 𝑘2𝑛

2𝑛−1
− ⋯ ) ;  (9) 

Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very 

efficiently using the arithmetic–geometric mean [1, 8]. 

In general, complete elliptic integrals of the first and second kind are not expressed in terms of elementary 

functions. If this happens, then integrals (3) and (7) are called pseudo-elliptic. 

3. Theory 

3.1. Definition of a spatial complex number 

Similar to how a vector is defined in three-dimensional space, we define a spatial complex number as 

follows [13]: 

𝐿 = 𝑅𝑒𝐿 + 𝑖𝐼𝑚𝐿 + 𝑓𝐹𝑎𝑛𝑡𝐿 = 𝑥 + 𝑖𝑦 + 𝑓𝑧.       (10) 

Where ReL is a real part of a spatial complex number L, ImL is its imaginary part, FantL is its spatial part. 

The spatial complex number L is shown in Fig. 3. We measure polar angle θ from xy-plane, not from z-axis, 

as usually. 

The components of the spatial vector expressed in terms of its magnitude R as well as the azimuthal angle φ 

and the polar angle θ are defined as follows: 

𝑥 = 𝑅 cos 𝜃 cos 𝜑,  

𝑦 = 𝑅 cos 𝜃 sin 𝜑,          (11) 

𝑧 = 𝑅 sin 𝜃.  
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Figure-3. Spatial complex number L. 

On the other hand, the following obvious equality holds 

𝑒𝑖(𝜑+𝜃) =  𝑒𝑖𝜑𝑒𝑖𝜃 =  cos 𝜃 cos 𝜑 + 𝑖 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 + 𝑖𝑒𝑖𝜑𝑠𝑖𝑛𝜃.     (12) 

Now, if we introduce the operator 

𝑓 = 𝑖𝑒𝑖𝜑 = 𝑒𝑖(𝜑+
𝜋

2
)
,          (13) 

then on the right-hand in (12) we obtain the expansion of the spatial vector with unit modulus along the x-, 

y-, z-axes. The components of this expansion coincide with the values of the projections in formula (11) at 

𝑅 = 1. 

So, the spatial complex number is given by formula (10) where x, y, z are the real numbers. 

The exponential form of the spatial complex number is 

𝐿 = 𝑅𝑒𝑖𝜑+𝑖′𝜃 = 𝑅𝑒𝑥𝑝[𝑖𝜑 + 𝑖′𝜃] = 𝑅𝑒𝑥𝑝[𝑖𝜑 + 𝑓𝑒𝑥𝑝[−𝑖𝜑]𝜃] = 𝑅𝑒𝑥𝑝[𝑖𝜑 + 𝑓∗𝑒𝑥𝑝[𝑖𝜑]𝜃],  (14) 

where 𝑖 is an imaginary unit in xy-plane, 𝑖′ is an imaginary unit in the plane that is perpendicular to xy-plane 

and contain fz-axes (Fig. 3); 𝑓 is taken from (13) and 𝑓∗ is taken from (21). 

When deriving (14), the following expression was taken into account for 𝑖′: 

𝑖′ = 𝑓𝑒𝑥𝑝[−𝑖𝜑] = 𝑓∗𝑒𝑥𝑝[𝑖𝜑].         (15) 

From (15) we obtain simple relation between imaginary units 𝑖 and 𝑖′: 

𝑖 =
1

𝜑
log

𝑓

𝑖′;           (16) 

In form, (16) is similar to the expression for the Lyapunov characteristic indices [14] 

𝐿𝑠 = lim
𝑡→∞

1

𝑡
log

𝑙𝑠(𝑡)

𝑙(0)
,          (17) 
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where 𝑡 is a time; 𝑙𝑠(𝑡) denotes the lengths of the semi-axes of the ellipsoid volume element into which the 

original spherical volume element transforms as it moves along its path in phase space of states; 𝑙(0) is the 

radius of the original sphere, at a time arbitrarily chosen as 𝑡 = 0. 

The trigonometric form of the spatial complex number is 

𝐿 = 𝑅(cos 𝜃 cos 𝜑 + 𝑖 cos 𝜃 sin 𝜑 + 𝑓 sin 𝜃).       (18) 

Using (14) and (18) we obtain an analogue of Euler's relation [12] in tunnel mathematics: 

𝑒𝑥𝑝[𝑖𝜑 + 𝑓𝑒𝑥𝑝[−𝑖𝜑]𝜃] = cos 𝜃 cos 𝜑 + 𝑖 cos 𝜃 sin 𝜑 + 𝑓 sin 𝜃.     (19) 

We define the conjugate spatial complex number as follows: 

𝐿∗  =  𝑥 − 𝑖𝑦 − 𝑓∗𝑧 =  𝑅𝑒−𝑖(𝜑+𝜃),        (20) 

where 𝑓∗ =  𝑖𝑒−𝑖𝜑,          (21) 

hence taking into account (13) we have 𝑓 ∙ 𝑓∗ = −1.      (22) 

Identical to the planar theory the following relation holds 

𝐿 ∙ 𝐿∗  =  𝑅2  =  𝑥2  +  𝑦2  +  𝑧2.        (23) 

Meanwhile the following relationships hold 

𝑖2 = −1 (as in planar theory [12]); 

𝑖 ∙ 𝑓 =  𝑓 ∙ 𝑖 =  − 𝑒𝑖𝜑  =  − cos 𝜑  − 𝑖 sin 𝜑  = −
𝑥+𝑖𝑦

√𝑥2+𝑦2
.     (24) 

𝑓∗  =  𝑖𝑒−𝑖𝜑  =  sin 𝜑  +  𝑖 cos 𝜑  =  
𝑦+𝑖𝑥

√𝑥2+𝑦2
=  𝑓 +  2 sin 𝜑  =  𝑓 + 

2𝑦

√𝑥2+𝑦2
.    (25) 

𝑓2 =  −  𝑒2𝑖𝜑 =  −  (cos 2𝜑  +  𝑖 sin 2𝜑) =  −
𝑥2−𝑦2+2𝑖𝑥𝑦

𝑥2+𝑦2 .     (26) 

Considering that 𝑓 =  𝑖𝑒𝑖𝜑 =  − sin 𝜑  +  𝑖 cos 𝜑  =  
−𝑦+𝑖𝑥

√𝑥2+𝑦2
,     (27) 

we can define spatial complex number on a plane as follows: 

𝐿 = 𝑥 (1 −
𝑦𝑧

𝑥√𝑥2+𝑦2
) + 𝑖𝑦 (1 +

𝑥𝑧

𝑦√𝑥2+𝑦2
).       (28) 

 

3.2. Preparation of mathematical tools for integrating elliptic integrals 

Now, using Euler's relation, we expand the left-hand side of (19), and then equate the components of this 

expansion to the corresponding components of the right-hand side of (19). This leads us to the following 

relations: 

𝑒𝑓𝜃 cos 𝜑 cos(𝑓𝜃 sin 𝜑) = cos 𝜃;        (29) 

𝑒𝑓𝜃 cos 𝜑 cos 𝜑 sin(𝑓𝜃 sin 𝜑) = 0;        (30) 

𝑒𝑓𝜃 cos 𝜑 sin 𝜑 sin(𝑓𝜃 sin 𝜑) = 𝑓 sin 𝜃;        (31) 

From relations (29) and (31) we easily obtain 

tan(𝑓𝜃 sin 𝜑) =
𝑓 tan 𝜃

sin 𝜑
;         (32) 
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Now we square (29) and (31) and add the resulting expressions taking into account (32). This gives us 

our basic mathematical tool for integrating elliptic integrals: 

𝑒𝑓𝜃 cos 𝜑 = |cos 𝜃|√tan2(𝑓𝜃 sin 𝜑) + 1;       (33) 

where |cos 𝜃| denotes the modulus of the function cos 𝜃. 

The expression under the square root on the right-hand side of (33) is very similar to the multiplier in 

the integrands in (3) and (7). We will use this to integrate complete elliptic integrals in the space of tunnel 

mathematics. 

In the tunnel mathematics space, it is very convenient to perform integration over the  

z-coordinate, since the operator f in (27) does not depend on this coordinate: 

∫ 𝑒𝑓𝑧 𝑑𝑧 =
1

𝑓
∫ 𝑒𝑓𝑧 𝑑(𝑓𝑧) = −𝑓∗𝑒𝑓𝑧 + 𝐶.       (34) 

In writing (34), we applied (22); C is the integration constant. 

To take advantage of this, we rewrite (32) and (33) as follows: 

tan(𝑓𝑧) = 𝑓
tan(

𝑧

sin 𝜑
)

sin 𝜑
= 𝑓𝑧′.         (35) 

Expression (35) allows us to conclude that applying the tangent operation to the values on the fz-axis in the 

space of tunnel mathematics (Fig. 3) is equivalent to moving along this axis to a parallel plane. 

𝑒𝑓𝑧 = |cos (
𝑧

cos 𝜑
)| √tan2(𝑓𝑧 tan 𝜑) + 1.       (36) 

Now we will find out the area of applicability of expressions (35) and (36) in the tunnel mathematics space. 

For this we will use expression (30). Obviously, (35) and (36) apply on the xy-plane (𝜃 = 0, Fig. 3), on the 

z-axis (𝜃 = ±
𝜋

2
), and also on some lines or filaments in this space. To find the equations of these filaments, 

it is necessary to equate the expression under the root in (36) to zero. 

tan2(𝑓𝑧 tan 𝜑) = −1,          (37) 

whence 

tan(𝑓𝑧 tan 𝜑) = ± 𝑖.          (38) 

Of particular interest is the case when there is a '+' sign on the right-hand side of (38). Hence 

𝑓𝑧 tan 𝜑 = Arctan 𝑖 = −
𝑖

2
Log

𝑖−𝑖

𝑖+𝑖
= −

𝑖

2
Log 0 = −

𝑖

2
(log 0 + 𝑖(𝜑 ± 2𝜋𝑛)) =

𝜑

2
± 𝜋𝑛 + 𝑖∞.  (39) 

In (39) n is an integer. 

Considering that 

𝑓𝑧 tan 𝜑 = −𝑧
sin2 𝜑

cos 𝜑
+ 𝑖𝑧 sin 𝜑,        (40) 

(here we used (27)) we come to the following conditions: 

𝑧 sin 𝜑 = ∞,           (41) 

which corresponds to the infinitely distant plane in Fig. 3; 

and 
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−𝑧
sin2 𝜑

cos 𝜑
=

𝜑

2
± 𝜋𝑛,          (42) 

whence 

𝑧 = −
cos 𝜑

sin2 𝜑
(

𝜑

2
± 𝜋𝑛).         (43) 

The plots of function (43) for 𝑛 = 0 and 𝑛 = −1  are shown in Figs. 4 and 5. 

 

 

Figure-4. The plots of function (43) for 𝒏 = 𝟎. 

The lines shown in Figs. 4 and 5 correspond to certain lines or filaments in the space of tunnel 

mathematics, on which, in addition to the xy-plane and z-axis, relations (35) and (36) are fulfilled. As the 

azimuthal angle φ increases, these filaments become completely periodic. As we will see below, these 

conditions are quite sufficient for the analytical expressions obtained in this space to be able to model the 

tabular values of the complete elliptic integrals (3) and (7). 

 

Figure-5. The plots of function (43) for 𝒏 = −𝟏. 

4. Result and Discussion 

4.1 Integration of the complete elliptic integral of the first kind 

Now we will rewrite (36) immediately under the integral sign in the following way: 
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∫
𝑑𝑧

√tan2(𝑓𝑧 tan 𝜑)+1
= ∫ 𝑒−𝑓𝑧 |cos (

𝑧

cos 𝜑
)| 𝑑𝑧.       (44) 

In order for the integral on the left-hand side of (44) to turn into a complete elliptic integral of the first kind 

(3), we need to make the following substitution: 

(𝑘 sin 𝑧)2 = − tan2(𝑓𝑧 tan 𝜑).         (45) 

Whence 

𝑘 sin 𝑧 = 𝑖 tan(𝑓𝑧 tan 𝜑) =
𝑖𝑓

sin 𝜑
tan (

𝑧

cos 𝜑
).       (46) 

In writing (46), we applied (35). 

We also obtain from (46) additional relations that will be needed later: 

𝑓 cos 𝜑 = −𝑖
sin 2𝜑

2

𝑘 sin 𝑧

tan(
𝑧

cos 𝜑
)
;         (47) 

(𝑓 cos 𝜑)2 = − (
sin 2𝜑

2

𝑘 sin 𝑧

tan(
𝑧

cos 𝜑
)
)

2

.        (48) 

Next, we perform the integration of the right-hand side of (44), taking into account the recurrence of integrals 

of type 

∫ 𝑒𝑥 sin 𝑥 𝑑𝑥,           (49) 

∫ 𝑒𝑥 cos 𝑥 𝑑𝑥,           (50) 

and the integration property in the space of tunnel mathematics (34). The result of the integration is as follows: 

𝐹(𝑧, 𝑘) = ∫
𝑑𝑧

√1−(𝑘 sin 𝑧)2
=

1

√1−(𝑘 sin 𝑧)2
∙

cos 𝜑 tan2(
𝑧

cos 𝜑
)

tan2(
𝑧

cos 𝜑
)+(

sin 2𝜑

2
 𝑘 sin 𝑧)

2 (|tan (
𝑧

cos 𝜑
)| − 𝑖

sin 2𝜑

2

𝑘 sin 𝑧

tan(
𝑧

cos 𝜑
)
). (51) 

When deriving (51), formulas (47) and (48) were used. 

As can be seen from (51), when integrating in the space of tunnel mathematics, the integrand is carried forward, 

leaving behind a trail of elementary functions. In this case, the resulting expression strongly depends on the 

azimuthal angle 𝜑 (Fig. 3) as a parameter. If 𝜑 = 0, the imaginary part of (51) disappears; if 𝜑 =
𝜋

2
, the full 

integral 𝐹(𝑧, 𝑘) disappears completely. 

It remains to be seen how well the real and imaginary parts of the expression 𝐹(𝑧, 𝑘) in (51) model the tabular 

values of the complete elliptic integral 𝐾(𝑘) in (3). 

4.1.1 Modeling using the real part of the expression 𝑭(𝒛, 𝒌) 

The real part of the expression 𝐹(𝑧, 𝑘) in (51) looks like this: 

𝑅𝑒𝐹(𝑧, 𝑘) =
1

√1−(𝑘 sin 𝑧)2
∙

cos 𝜑

tan2(
𝑧

cos 𝜑
)+(

sin 2𝜑

2
 𝑘 sin 𝑧)

2 |tan3 (
𝑧

cos 𝜑
)|.     (52) 

Below are plots of 𝑅𝑒𝐹(𝑧, 𝑘) for different ranges of values of the modulus k and amplitude z. 
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Figure-6. Plot of 𝑹𝒆𝑭(𝒛, 𝒌) in (52) for 𝟎 < 𝒌 < 𝟐𝟎; −𝟒 < 𝒛 < 𝟒. 

 

 

Figure-7. Plot of 𝑹𝒆𝑭(𝒛, 𝒌) in (52) for 𝟎 < 𝒌 < 𝟏. 𝟓; −𝟐 < 𝒛 < 𝟐. 
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Figure-8. Plot of 𝑹𝒆𝑭(𝒛, 𝒌) in (52) for 𝟎 < 𝒌 < 𝟏. 𝟓;  𝟎 < 𝒛 < 𝟏. 𝟒. 

The plots in Figs. 6 – 8 are built using 𝜑 =
𝜋

4
≈ 0.785. In Fig. 8, a whole set of curves can be clearly seen that 

can be used to model incomplete elliptic integrals of the first kind (1). 

Fig. 9 below shows a plot constructed using the tabular values of K(k) in (3) and a plot of 𝑅𝑒𝐹 (
𝜋

2
, 𝑘) in (52) 

at 𝜑 ≈ 0.85 𝑟𝑎𝑑 ≈ 49°. 

 

Figure-9. Plot constructed using the tabular values of K(k) in (3) (green dotted curve); and a plot of 

𝑹𝒆𝑭 (
𝝅

𝟐
, 𝒌) in (52) at 𝝋 ≈ 𝟎. 𝟖𝟓 𝒓𝒂𝒅 ≈ 𝟒𝟗° (blue curve; when constructing the plot, 𝟏 was added to 

expression (52)). 
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As can be seen from Fig. 9, the modeling is performed with fairly good accuracy. By adjusting the value of 

the parameter 𝜑, it is possible to reduce the error in the modeling. 

Thus, we can conclude that expression (52) at 𝜑 ≈ 0.85 is the sum of power series (5). 

4.1.2 Modeling using the imaginary part of the expression 𝑭(𝒛, 𝒌) 

The imaginary part of the expression 𝐹(𝑧, 𝑘) in (51) looks like this: 

𝐼𝑚𝐹(𝑧, 𝑘) = −
1

√1−(𝑘 sin 𝑧)2
∙

cos 𝜑

tan2(
𝑧

cos 𝜑
)+(

sin 2𝜑

2
 𝑘 sin 𝑧)

2

sin 2𝜑

2
 𝑘 sin 𝑧 tan (

𝑧

cos 𝜑
).    (53) 

Below are plots of ± 𝐼𝑚𝐹(𝑧, 𝑘) for different ranges of values of the modulus k and amplitude z. 

 

Figure-10. Plot of −𝑰𝒎𝑭(𝒛, 𝒌) in (53) for 𝟎 < 𝒌 < 𝟏𝟎; −𝟒 < 𝒛 < 𝟒. 

 

Figure-11. Plot of −𝑰𝒎𝑭(𝒛, 𝒌) in (53) for 𝟎 < 𝒌 < 𝟏. 𝟓; −𝟒 < 𝒛 < 𝟒. 
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Figure-12. Plot of 𝑰𝒎𝑭(𝒛, 𝒌) in (53) for 𝟎 < 𝒌 < 𝟏. 𝟐;  𝟎 < 𝒛 < 𝟓. 

The plots in Figs. 10 – 12 are built using 𝜑 =
𝜋

4
≈ 0.785. In Fig. 12, a whole set of curves can be clearly seen 

that can be used to model incomplete elliptic integrals of the first kind (1). 

Fig. 13 below shows a plot constructed using the tabular values of K(k) in (3) and a plot of 𝐼𝑚𝐹 (
𝜋

2
, 𝑘) in (53) 

at 𝜑 ≈ 0.85 𝑟𝑎𝑑 ≈ 49°. 

 

Figure-13. Plot constructed using the tabular values of K(k) in (3) (blue dotted curve); and a plot of 

𝑰𝒎𝑭 (
𝝅

𝟐
, 𝒌) in (53) at 𝝋 ≈ 𝟎. 𝟖𝟓 𝒓𝒂𝒅 ≈ 𝟒𝟗° (green curve; when constructing the plot, 𝟏. 𝟔 was added to 

expression (53)). 

As can be seen from Fig. 13, the modeling also is performed with fairly good accuracy. By adjusting the value 

of the parameter 𝜑, it is possible to reduce the error in the modeling. 
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As in the case of modeling by means the real part of expression (51), we can conclude that expression (53) at 

𝜑 ≈ 0.85 also represents the sum of the power series (5). 

Based on expressions (52) and (53) we can draw the general conclusion that the nature of the complete elliptic 

integral of the first kind (3) is closely related to the tangent function. 

4.2 Integration of the complete elliptic integral of the second kind 

Now we will rewrite (36) immediately under the integral sign in the following way: 

∫ √tan2(𝑓𝑧 tan 𝜑) + 1𝑑𝑧 = ∫
𝑒𝑓𝑧

|cos(
𝑧

cos 𝜑
)|

𝑑𝑧.       (54) 

In order for the integral on the left-hand side of (54) to turn into a complete elliptic integral of the second kind 

(7), we will use substitution (45), and rewrite expression (46) as follows: 

𝑘 sin (
𝑧

cos 𝜑
) = 𝑖 tan (𝑓𝑧

tan 𝜑

cos 𝜑
).         (55) 

In the right part of (54) the cosine function is in the denominator. To transfer it to the numerator and use the 

recurrence of the integrals (49) and (50), we differentiate the expression (55). After which we find the expression 

for the cosine function: 

cos (
𝑧

cos 𝜑
) =

1

𝑘
 

𝑖𝑓 tan 𝜑

cos2(𝑓𝑧
tan 𝜑

cos 𝜑
)
.         (56) 

Substituting (56) into (54) and performing integration, we obtain the following expression for the elliptic 

integral of the second kind in the space of tunnel mathematics: 

𝐸(𝑧, 𝑘) = ∫ √1 − (𝑘 sin 𝑧)2 𝑑𝑧 = −(𝑓 + 2 sin 𝜑) √1 − (𝑘 sin 𝑧)2 (1 + (1 −

cos2 𝜑

2 tan2 𝜑+cos2 𝜑
) (

cos 𝜑

tan 𝜑
𝛼(cos 𝛽 + 𝑖 sin 𝛽) −

𝑘

2 tan 𝜑
cos (

𝑧

cos 𝜑
) (cos 𝜑 − 𝑖 sin 𝜑) − 1));   (57) 

where 

𝛼 = √
𝑘

tan 𝜑
cos (

𝑧

cos 𝜑
) √1 +

2 sin 𝜑

𝑘 cos(
𝑧

cos 𝜑
)

+ (
𝑘

tan 𝜑
cos (

𝑧

cos 𝜑
))

−2

;     (58) 

𝛽 =
1

2
tan−1 (−

sin 𝜑

cos 𝜑+(
𝑘

tan 𝜑
cos(

𝑧

cos 𝜑
))

−1).        (59) 

As can be seen from (57), unlike the elliptic integral of the first kind (51), the elliptic integral of the second 

kind 𝐸(𝑧, 𝑘) has all three components in the space of tunnel mathematics (10). If 𝜑 = 0, then the elliptic integral 

of the second kind has only a spatial component: 

𝐸(𝑧, 𝑘) = −𝑓 √1 − (𝑘 sin 𝑧)2.         (60) 

If 𝜑 =
𝜋

2
, then full integral 𝐸(𝑧, 𝑘) in (57) disappears. Now let us consider how each of these three components 

models the complete elliptic integral of the second kind (7). 

4.2.1 Modeling using the real part of the expression 𝑬(𝒛, 𝒌) 

The real part of the expression 𝐸(𝑧, 𝑘) in (57) looks like this: 
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𝑅𝑒𝐸(𝑧, 𝑘) = −2 sin 𝜑 √1 − (𝑘 sin 𝑧)2 (1 + (1 −
cos2 𝜑

2 tan2 𝜑+cos2 𝜑
) (

cos 𝜑

tan 𝜑
𝛼(cos 𝛽 + cos 𝜑 sin 𝛽) +

𝑘 cos 𝜑

2
cos (

𝑧

cos 𝜑
) (cos 𝜑 −

1

tan 𝜑
) − 1));        (61) 

where 𝛼 and 𝛽 are taken from (58) and (59). 

Below are plots of ± 𝑅𝑒𝐸(𝑧, 𝑘) for different ranges of values of the modulus k and amplitude z. 

 

 

Figure-14. Plot of 𝑹𝒆𝑬(𝒛, 𝒌) in (61) for 𝟎 < 𝒌 < 𝟑𝟎; −𝟏. 𝟓 < 𝒛 < 𝟏. 𝟓. 

 

In Fig. 14 we see a T-shaped profile; in the next figures we will turn it over.  

The plots in Figs. 14 – 16 are built using 𝜑 =
𝜋

4
≈ 0.785. In Fig. 16, a whole set of curves can be clearly seen 

that can be used to model incomplete elliptic integrals of the second kind (6). 

Fig. 17 below shows a plot constructed using the tabular values of E(k) in (7) and a plot of −𝑅𝑒𝐸(1.09, 𝑘) in 

(61) at 𝜑 ≈ 0.785 𝑟𝑎𝑑 = 45°. In this case, we determined the value of amplitude z from the equality 

𝑧 =
𝜋

2
cos 𝜑 = 1.57 ∙ 0.7 = 1.09. 
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Figure-15. Plot of −𝑹𝒆𝑬(𝒛, 𝒌) in (61) for 𝟎 < 𝒌 < 𝟑𝟎; −𝟏. 𝟓 < 𝒛 < 𝟏. 𝟓. 

The values of the modulus k can extend much further than those shown in Fig. 15; however, the values of the 

amplitude z in this case are very close to zero (see Fig. 18 for the spatial component). 

 

 

Figure-16. Plot of −𝑹𝒆𝑬(𝒛, 𝒌) in (61) for 𝟎 < 𝒌 < 𝟐;  𝟎 < 𝒛 < 𝟏. 𝟓. 
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Figure-17. Plot constructed using the tabular values of E(k) in (7) (green dotted curve); and a plot of 

−𝑹𝒆𝑬(𝟏. 𝟎𝟗, 𝒌) in (61) at 𝝋 ≈ 𝟎. 𝟕𝟖𝟓 𝒓𝒂𝒅 = 𝟒𝟓° (blue curve; when constructing the plot, 𝟎. 𝟓 was added 

to expression (61)). 

As can be seen from Fig. 17, the modeling is performed with fairly good accuracy. By adjusting the value of 

the parameter 𝜑, it is possible to reduce the error in the modeling. 

Thus, we can conclude that expression (61) at 𝜑 ≈ 0.785 is the sum of power series (9). 

 

4.2.2 Modeling using the spatial part of the expression 𝑬(𝒛, 𝒌) 

The spatial part of the expression 𝐸(𝑧, 𝑘) in (57) is very similar to the real part, so we first consider it and 

not the imaginary component: 

𝐹𝑎𝑛𝑡𝐸(𝑧, 𝑘) = −√1 − (𝑘 sin 𝑧)2 (1 + (1 −
cos2 𝜑

2 tan2 𝜑+cos2 𝜑
) (

cos 𝜑

tan 𝜑
(𝛼 cos 𝛽 −

𝑘

2
cos (

𝑧

cos 𝜑
)) − 1)); (62) 

where 𝛼 and 𝛽 are taken from (58) and (59). 

Below are plots of ± 𝐹𝑎𝑛𝑡𝐸(𝑧, 𝑘) for different ranges of values of the modulus k and amplitude z. 
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Figure-18. Plot of 𝑭𝒂𝒏𝒕𝑬(𝒛, 𝒌) in (62) for 𝟎 < 𝒌 < 𝟐𝟓𝟎𝟎; −𝟎. 𝟎𝟐 < 𝒛 < 𝟎. 𝟎𝟐. 

 

 

Figure-19. Plot of 𝑭𝒂𝒏𝒕𝑬(𝒛, 𝒌) in (62) for 𝟎 < 𝒌 < 𝟑𝟎; −𝟏. 𝟓 < 𝒛 < 𝟏. 𝟓. 



 
 
  AAJ.11.2106-2465 

 

 

  
 

 

 

Figure-20. Plot of −𝑭𝒂𝒏𝒕𝑬(𝒛, 𝒌) in (62) for 𝟎 < 𝒌 < 𝟐;  𝟎 < 𝒛 < 𝟏. 𝟓. 

 

 

Figure-21. Plot constructed using the tabular values of E(k) in (7) (green dotted curve); and a plot of 

−𝑭𝒂𝒏𝒕𝑬(𝟏. 𝟎𝟗, 𝒌) in (62) at 𝝋 ≈ 𝟎. 𝟕𝟖𝟓 𝒓𝒂𝒅 = 𝟒𝟓° (blue curve; when constructing the plot, 𝟎. 𝟖 was 

added to expression (62)). 
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The plots in Figs. 18 – 20 are built using 𝜑 =
𝜋

4
≈ 0.785. In Fig. 20, a whole set of curves can be clearly seen 

that can be used to model incomplete elliptic integrals of the second kind (6). 

Fig. 21 shows a plot constructed using the tabular values of E(k) in (7) and a plot of −𝐹𝑎𝑛𝑡𝐸(1.09, 𝑘) in (62) 

at 𝜑 ≈ 0.785 𝑟𝑎𝑑 = 45°. In this case, we determined the value of amplitude z from the equality 

𝑧 =
𝜋

2
cos 𝜑 = 1.57 ∙ 0.7 = 1.09. 

Analyzing Fig. 21, we can conclude that modeling using the spatial part of the expression 𝐸(𝑧, 𝑘) in (57) for 

the value of the parameter 𝜑 =
𝜋

4
≈ 0.785 is unsatisfactory. 

4.2.3 Modeling using the imaginary part of the expression 𝑬(𝒛, 𝒌) 

The imaginary part of the expression 𝐸(𝑧, 𝑘) in (57) looks like this: 

𝐼𝑚𝐸(𝑧, 𝑘) = − cos 𝜑 √1 − (𝑘 sin 𝑧)2 (1 −
cos2 𝜑

2 tan2 𝜑+cos2 𝜑
) (cos 𝜑 𝛼 sin 𝛽 +

𝑘

2
sin 𝜑 cos (

𝑧

cos 𝜑
)); (63) 

where 𝛼 and 𝛽 are taken from (58) and (59). 

Below are plots of − 𝐼𝑚𝐸(𝑧, 𝑘) for different ranges of values of the modulus k and amplitude z. 

 

 

Figure-22. Plot of −𝑰𝒎𝑬(𝒛, 𝒌) in (63) for 𝟎 < 𝒌 < 𝟐𝟓𝟎; −𝟎. 𝟐 < 𝒛 < 𝟎. 𝟐. 
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Figure-23. Plot of −𝑰𝒎𝑬(𝒛, 𝒌) in (63) for 𝟎 < 𝒌 < 𝟐; −𝟏. 𝟐 < 𝒛 < 𝟎. 

 

Figure-24. Plot of −𝑰𝒎𝑬(𝟏. 𝟎𝟗, 𝒌) in (63) at 𝝋 ≈ 𝟎. 𝟕𝟖𝟓 𝒓𝒂𝒅 = 𝟒𝟓°. 
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Figure-25. Plot of −𝑰𝒎𝑬(−𝟎. 𝟎𝟎𝟒, 𝒌) in (63) at 𝝋 ≈ 𝟎. 𝟕𝟖𝟓 𝒓𝒂𝒅 = 𝟒𝟓°. 

The plots in Figs. 22 – 25 are built using 𝜑 =
𝜋

4
≈ 0.785. 

Fig. 24 shows a plot of −𝐼𝑚𝐸(1.09, 𝑘) in (63) at 𝜑 ≈ 0.785 𝑟𝑎𝑑 = 45°. In this case, we also determined the 

value of amplitude z from the equality 

𝑧 =
𝜋

2
cos 𝜑 = 1.57 ∙ 0.7 = 1.09. 

Analyzing Fig. 24, we see that the plot of the imaginary part of the expression 𝐸(𝑧, 𝑘) in (57) for the value of 

the parameter 𝜑 =
𝜋

4
 has nothing in common with the plot for the complete elliptic integral E(k) in Fig. 2. 

Fig. 25 shows a plot of −𝐼𝑚𝐸(−0.004, 𝑘) in (63) at 𝜑 ≈ 0.785 𝑟𝑎𝑑 = 45°. It shows that when the amplitude 

z decreases approximately by 100 times, the values of the modulus k increase linearly. 

5. Conclusion 

Integration of complete elliptic integrals of the first and second kind in the space of tunnel mathematics brings 

the integrand forward, leaving behind it a trail of elementary functions. The plots of the resulting analytical 

expressions simulate with fairly good accuracy the plots of both integrals, constructed using tabular values. In 

order to use the expressions for both integrals simultaneously in calculations, it is necessary to select the 

corresponding value of the parameter φ. This may cause some inconvenience. The resulting expressions are not 

satisfied in the entire space of tunnel mathematics. They hold in the xy-plane, on the z-axis, and also on some lines 

or filaments in this space. However, even this is enough for at least one of the components of the expression for 

each of the integrals to be able to model tabular values of the corresponding integral well. Our results show that 

the nature of the complete elliptic integral of the first kind is closely related to the tangent function. The obtained 

analytical expressions for complete elliptic integrals of the first and second kind can also be used to model the 

corresponding incomplete ones, but this is already the topic of another study. 
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