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Abstract: The integration of unmanned aerial vehicles (UAVs) into Internet of Things (IoT) systems present 

a promising solution for enhancing connectivity and data transmission, particularly in remote and rural areas. I 

introduce an innovative approach that combines UAV-assisted relaying with split learning (SL) for distributed 

inference in IoT environmental monitoring applications. By leveraging UAVs as relays, this method addresses 

connectivity challenges and extends coverage in underserved regions, while SL optimizes data processing and 

privacy. The proposed system architecture enables UAVs to facilitate reliable data transmission between edge 

devices and central servers, while SL allows for efficient learning by partitioning the neural network across 

devices and UAVs. This approach provides adaptive server strategies based on channel conditions and 

performance metrics. Extensive simulations demonstrate that the proposed framework significantly enhances 

system adaptability, reduces latency, and improves accuracy even under adverse channel conditions. The 

integration of UAV relaying with SL offers flexibility in managing trade-offs between data quality, latency, and 

computational load, ensuring robust performance in challenging environments. This research contributes valuable 

insights into advancing distributed learning in IoT systems with potential applications in environmental 

monitoring, disaster response, and rural connectivity. 
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1. Introduction 

ollution from industrial activities, transportation emissions, and waste disposal presents severe environmental 

challenges, raising substantial concerns about its impact [1]. Maintaining health and hygiene is crucial for 

both human sustainability and national progress, which depend on a clean and hazard-free environment. Effective 

monitoring of these factors is essential to ensure public health, particularly in rural and underdeveloped regions. 

Recent advancements have introduced IoT-based environmental monitoring systems, which utilize interconnected 

devices equipped with various sensors to collect real-time data on critical environmental parameters such as air 

quality, soil moisture, water quality, temperature, and humidity [1, 2]. These devices leverage wireless 

communication technologies—including Wi-Fi, cellular networks, LoRaWAN, and satellite connectivity—to 

transmit data to centralized servers or cloud platforms for storage, analysis, and further processing [2]. Unmanned 

aerial vehicles (UAVs) have gained extensive application across diverse sectors, including telecommunications, 

rescue operations, and surveillance [3, 4]. Their potential to facilitate end-to-end wireless communications, 

particularly in remote and rural areas where traditional cellular infrastructure is lacking, has been widely 

recognized [4]. UAVs can be employed as mobile access points, addressing data demand and congestion 

challenges anticipated in future wireless networks [5]. Unlike static infrastructure, UAV networks offer flexible 

deployment, allowing them to dynamically extend coverage as needed [6]. In this work, I propose a novel 

approach for distributed learning in IoT environmental monitoring scenarios. By integrating the split learning (SL) 

paradigm with UAV relaying within an IoT network, this approach enhances data transmission rates and ensures 

a balanced distribution of computational tasks among edge devices, UAVs, and central servers. Additionally, the 

system’s adaptability is improved through the server’s ability to determine the optimal transmission strategy based 
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on real-time channel conditions and performance metrics such as latency, throughput, and energy efficiency. 

Numerical simulations demonstrate that this distributed learning approach provides significant robustness to 

varying channel conditions while achieving high estimation accuracy. 

 

2. Background 

2.1 IoT Connectivity in Rural Areas  

 

IoT connectivity is closely tied to the developmental status of a country [7]. In developed nations, rural areas 

are typically accessible via transportation networks and are supported by the electricity grid. However, mobile 

operators often face challenges in achieving satisfactory returns on investment when extending backhaul to these 

regions. In contrast, developing countries, especially impoverished areas, struggle with bridging the digital divide. 

Essential services like healthcare and education depend on connectivity, but inadequate transportation 

infrastructure isolates rural communities, and local power generation is common. Establishing backhaul in such 

areas often requires state subsidies to facilitate cost-effective solutions. 

 

UAVs equipped with communication technology offer a promising solution for providing connectivity in 

rural and underserved regions [8]. These drones can act as flying base stations, creating temporary or permanent 

connectivity where traditional infrastructure is impractical or prohibitively expensive. By flying over remote 

areas, UAVs can establish wireless links between users and broader network infrastructures, extending backhaul 

links to underserved communities [9]. In regions with underdeveloped or non-existent transportation 

infrastructure, UAVs offer a flexible and efficient means of providing backhaul links [7]. Their swift deployment 

and adaptability make them particularly valuable in emergency situations or resource-limited areas [10]. 

 

2.2 Split Learning 

 

Split learning (SL) [11, 12] represents a novel distributed learning paradigm that divides a neural network F 

(comprising L layers) into sequential layers distributed across multiple participants, such as edge devices and 

servers. In SL, edge devices securely share their training data with the server, which manages the training process 

and handles most of the computational work- load. This distributed approach accelerates convergence and 

alleviates band- width constraints [12]. 

SL separates model training and inference processes. During training, raw data remains on edge devices, 

preventing unnecessary data transmission across the network. The neural network can be represented as F = (fE, 

fS). 

where fE : RN   RM and fS : RM   R1, with N and M  denoting the dimensions of raw data and intermediate 

representations, respectively, and M < N . During activation, the edge device’s sub-network produces an 

intermediate representation of raw data x as z = fE(x), which is then sent to the server for prediction yˆ = fS(z) 

(where  fS  is  the  sub-network  located on the server). This approach enables collaborative learning while 

preserving data privacy by iteratively exchanging model updates between the server and edge devices [12]. In 

split inference, SL enhances efficiency by utilizing pre- trained models distributed across multiple devices. Initial 

data processing occurs locally on edge devices, generating intermediate representations z, which are then 

transmitted to a centralized server for aggregation and final inference [12]. 

In the context of a rural IoT network, which includes edge devices, servers, and a relaying UAV, the neural 

network F is divided into three components: F = (fE, fD, fS), where fD : RM → RM represents the UAV’s sub-network. 

 

2.3 Recurrent Neural Networks 

 

Recurrent Neural Networks (RNNs), designed for sequence-based tasks, are well-suited for processing 

time series data due to their ability to discern temporal relationships [13]. A simple single-layer RNN is illustrated 

in Fig. 1, where the output from the previous time step, t 1, is fed into the current time step, t, allowing the network 

to retain past information. The computation for a single RNN cell is described by: 

 

ht = tanh(Wihxt + bih + Whhht−1 + bhh), 
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where tanh is the hyperbolic tangent function, ht and ht−1 are the hidden states at time steps t and t − 1, 

respectively, and Wih, Whh, bih, and bhh are the weights and biases to be learned, with xt denoting the input at time 

t. 

Basic RNN cells face challenges in learning long-range dependencies due to issues such as vanishing or 

exploding gradients. To address these limitations, Long Short-Term Memory (LSTM) cells were introduced [14]. 

LSTM cells include specialized memory blocks within the recurrent hidden layer, enhancing their ability to 

capture long-term dependencies. Each memory block consists of memory cells and gates, which manage the flow 

of information and retain temporal states. 

 

Split Learning–Based RNNs: Integrating SL into LSTM networks initially posed challenges, leading 

researchers to explore alternative methods. Some studies have suggested using 1D-CNNs instead of LSTMs. 

Recent advancements have introduced efficient techniques for incorporating SL into LSTM architectures, directly 

embedding SL into LSTM models to address implementation challenges. This paper builds on the LSTMSPLIT 

algorithm [19], which vertically splits the LSTM neural network, requiring at least two LSTM layers. The input 

sequence is stored at the edge device, with intermediate representations transmitted from the edge device’s LSTM 

layer to the server’s LSTM layer, and update gradients flowing in the opposite direction (Fig. 2). Another approach 

[20] involves distributing a single LSTM layer across multiple edge devices, partitioned into sub-networks trained 

individually, handling segments within multi-segment training sequences. Communication and parameter sharing 

among edge devices align with the federated learning paradigm. 

 

3. UAV-Assisted Relaying in IoT 

3.1 System Model 

This section discusses a conventional IoT system that includes an edge device, a server, and a UAV 

acting as a wireless relay. The UAV serves as a mobile base station providing a backhaul link, as shown in Figure 

2. Each system component has distinct computational capabilities, represented as C(fE) < C(fD) < C(fS), where 

C( ) denotes the computational complexity of the sub-networks. 

Data Collection and Pre-Processing 

The edge device gathers raw data, labeled as x, which includes sensor measurements and corresponding 

labels y. This data is pre-processed by the edge device’s sub-network, producing an intermediate representation z 

= fE(x). This intermediate representation is essential for subsequent processing stages. 

Communication and Processing Strategy 

The server manages communication and inference processes based on channel conditions and performance 

metrics like error rate, latency, and communication overhead. The server decides whether to communicate directly 

with the edge device or involve the UAV’s sub-network in processing. Channel conditions can vary significantly: 

• Edge Device to UAV (WED): This link may experience varying quality. 

• Edge Device to Server (WES): This link may also have fluctuating quality. 

• UAV to Server (WDS): This link is expected to maintain consistently good quality throughout the 

network’s operation. 

Processing and Inference 

Depending on the communication strategy: 

• Direct Communication: If the edge device communicates directly with the server, the intermediate 

representation at the server side is zˆ = WES(z). 
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• Relay Through UAV: If the UAV relays the communication, the intermediate representation after 

processing by the drone sub-network is zˆ = WDS(fD(WED(z))). The server then decides between two 

estimation strategies based on latency constraints: 

• Full Server Network: yˆfull = fS(zˆ) 

• Reduced Server Network: yˆFC = fˆS (zˆ), where only the output layer of the server sub-network is used. 

Loss Function and Optimization 

The loss function for model evaluation is: 

𝑳(𝒚, 𝒚ˆ𝒇𝒖𝒍𝒍, 𝒚ˆ𝑭𝑪)  =  𝑴𝑺𝑬(𝒚, 𝒚ˆ𝒇𝒖𝒍𝒍)  +  𝑴𝑺𝑬(𝒚, 𝒚ˆ𝑭𝑪), 

where MSE represents the mean squared error over the training dataset Dtr. During backpropagation, gradients 

are calculated and transmitted from the server through the UAV to the edge device, reversing the neural network’s 

operations, as shown by the blue arrows in Figure 2. All three sub-networks (fE, fD, fS) are optimized together 

using algorithms like stochastic gradient descent (SGD) or its variants, such as Adam. 

Optimization Goal 

The main objective is to define the most effective transmission strategy that minimizes the overall system 

error, measured by the MSE error between y and yˆ across all test examples. This involves considering channel 

conditions and latency constraints to select the optimal approach for communication and processing. 

3.2 Channel Model 

The wireless communication links between the edge device and server (WES), edge device and UAV 

(WED), and UAV and server (WDS) are modeled as conventional erasure channels. Each link is characterized by 

an erasure probability p, which affects the reliability of data transmission. 

Channel Representation 

Each link is represented as a binary vector q (0, 1)^M, where M is the length of the intermediate 

representation z. The channel introduces erasures by either retaining or removing individual symbols from z. 

Therefore, the received version of z at the server side is: 

𝒛ˆ =  𝒛 ⊙  𝒒, 

where ⊙ denotes element-wise multiplication. This model accounts for the potential loss of information 

during transmission and its impact on overall system performance. 

Impact on Performance 

The erasure probability p affects the quality of the intermediate representation received at the server. 

Higher erasure rates lead to greater distortion of z, impacting the accuracy of the final estimation. Effective 

strategies to mitigate channel distortions are crucial for maintaining high performance in IoT systems with UAV-

assisted relaying. 

4. Performance Evaluation 

3.1 Training Setup 

To evaluate the UAV-assisted relaying approach combined with split learning (SL) for distributed inference, a 

dataset specifically designed for environmental monitoring was used. The dataset focuses on pollution monitoring 

in the Danube River near Novi Sad, containing 3,264 instances. 70% of the data was allocated for training and 

30% for testing. Each instance includes daily measurements from November 2013 to October 2022, covering eight 

water quality parameters: temperature, pH, electrical conductivity, dissolved oxygen, oxygen saturation, 

ammonium, and nitrite. The predictive modeling focused on forecasting dissolved oxygen levels. The prediction 
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is based on the last 20 measurements of dissolved oxygen and the measurements of the other seven parameters 

for the current day. After preprocessing and converting to time series, each dataset instance consists of 27 features 

(20 historical measurements of dissolved oxygen plus 7 other parameters) and one label (the current day’s 

dissolved oxygen level). The data is normalized to the range of -1 to 1. The training follows the conventional SL 

method, with modifications for this specific scenario. Initially, raw data x is preprocessed on the edge device, and 

the intermediate representation is transmitted either directly to the server via WES or through the backhaul using 

a drone (WED and WDS). The drone performs additional processing of the intermediate representation. 

The neural network is partitioned into sub-networks across the edge device (one LSTM layer), the drone (two 

LSTM layers), and the server (three LSTM layers followed by a fully connected (FC) layer). The number of 

LSTM hidden units H is set to match the length of the intermediate representation M, with H = M = 10. The FC 

layer at the server also has 10 neurons. Training uses a learning rate α = 0.01, β1 = 0.9, and β2 = 0.999, with a 

batch size of 64. Stochastic gradient descent (SGD) with the Adam optimizer is employed. During training, 

channel conditions are fixed, following a proposed approach. However, during testing, the model’s performance 

is assessed across varying erasure probabilities p. Specifically, the impact of varying training erasure probabilities 

ptr in WES and WED is explored while maintaining favorable conditions in the backhaul channel WDS (with a 

small erasure probability). Dropout layers simulate the erasure channel conditions during training, substituting all 

three wireless links in Figure 2 on a symbol basis. Dropout probabilities are adjusted to regulate channel erasures 

in simulations. 

3.2 Numerical Results 

System performance under varying channel conditions was investigated, considering significant distortions 

introduced by either WES or WED. During testing, the erasure probability for the more distorted channel is set to 

p1, while the less distorted channel is set to p2 = p1 * 0.3. The backhaul channel WDS remains constant with an 

erasure probability of 0.05 during both training and testing phases. Figure 3 illustrates the mean squared error 

(MSE) performances of fronthaul and backhaul systems. The backhaul (WED) introduces significant distortion 

due to a high erasure probability. Specifically, the training erasure probability for WED is 0.5, while for WES it 

is 0.1. During testing, p is set to 0.5 for WED and 0.15 for WES. Similar setups are evaluated with different 

configurations to demonstrate the proposed approach’s robustness to distorted channels. These settings can 

generalize to more complex scenarios involving multiple drones and mobile edge devices. Results show that the 

combination of split learning and UAV-assisted relaying provides superior performance compared to direct server 

communication, particularly in highly distorted channels. The proposed approach effectively mitigates the impact 

of erasure channels, demonstrating its potential in real-world IoT deployments where wireless channels are 

unreliable. 

5. Conclusion 

This work introduces an innovative framework that combines distributed learning with UAV-assisted relaying for 

IoT environmental monitoring systems. The proposed architecture demonstrates significant adaptability to 

varying channel conditions, offering performance trade-offs that can be optimized by the server. By integrating 

the split learning (SL) paradigm, the framework efficiently balances the computational load among the edge 

device, UAV, and server. Future research will focus on incorporating additional factors into the server's decision-

making process, such as latency and energy efficiency. This enhancement will increase the system’s flexibility 

and responsiveness, further improving its performance in dynamic and challenging environments. 
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Figure-1 The structure of Recurrent Neural Network [Image Courtesy: Google] 

Figure-2 SL–based fronthaul/backhaul communication with different channel conditions [Image 

Courtesy: Google] 

Figure-3 MSE vs. p1 Erasure Probabilities: Better Edge-to-Server Channel Conditions (ptr for WED 

greater than WES) with WDS = 0.05. 
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Figure-4 MSE as a Function of p1 Erasure Probabilities: Analysis of Improved Edge-to-Drone Channel 

Conditions (with ptr for WED smaller than WES) and WDS = 0.05. 
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