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It is well known from the classical works [6] and [1] that an analytical solution to the problem of flow past a 

cone is possible only in the limit of small vertex angles of the cone. In this case, the solution pertains only to 

the potential flow outside the boundary layer area. Tunnel mathematics is not subject to such restrictions. The 

case of arbitrary vertex angles of a cone usually requires the application of numerical methods [3, 4], and time-

consuming graphical methods are also used [5, 7]. Such solutions do not pertain to the boundary layer area, but 

only to the potential flow outside it. The current state of affairs in the theory of heating and transition in a 

hypersonic boundary layer can be found in works [9] and [10]. From the perspective of energy conservation, 

aerodynamic heating in a hypersonic boundary layer is considered in [11] and [12]. The boundary layer is an 

intriguing hybrid that arises from the interaction of two potential fields: the electrostatic attraction field from the 

cone wall and the vector velocity field of the main fluid stream. Therefore, it is plausible that a boundary layer 

can be described using tunnel mathematics, as the theory of complex variables tends to describe potential fields. 

Furthermore, tunnel mathematics enables the use of ordinary mathematical analysis, which has long been 

supplanted in fluid dynamics by numerical methods. Examples of the application of tunnel mathematics to 

describe the boundary layer in compressible and incompressible fluid flows over a rotating disk can be found in 

[15] and [16]. 
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  Abstract:  The means of tunnel mathematics (the theory of functions of a spatial complex variable) allow for

an analytical solution to the  problem of  supersonic  flow around a cone in the area  of the boundary layer and

beyond. The peculiar feature of the Navier-Stokes equations is that they allow for the determination of analytical

velocity fields of fluids only for a small number of simple problems. Of course, the problem of the supersonic

motion  of  fluid  around  a  cone  is  not  included  in  this  number.  Tunnel  mathematics  is  a  method  for  finding

analytical vector velocity fields for steady flows of fluids with axial symmetry. The Navier-Stokes equations are

then used to determine pressure and temperature distributions. The main theorem of tunnel mathematics allows

for the determination of these distributions for planes z = const (similar to constructing slices of a brain in an MRI

procedure). By collecting these “slices,” we can obtain full space distributions of pressure and temperature around

a supersonic cone. At this stage of investigation, the conclusions obtained through tunnel mathematics make it

possible to qualitatively assess the thickness of the boundary layer on the cone's surface, the shape of the shock

wave, and whether the shock wave intersects the boundary layer. First of all, we focused on ensuring that the

resulting  solutions  corresponded  to  the  physical  pattern  of  phenomena.  No  doubt,  solutions  obtained  through

tunnel mathematics must be confirmed experimentally.
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2. Theoretical Overview 

The flow past a cone is schematically shown in Figure 1. We work in modified spherical system of coordinates; 

i.e. we measure angle θ from xy-plane (not from z axis, as usually). So, we need carry out following transformation 

with ordinary spherical system of coordinates: 

𝑣𝜃 → −𝑣𝜃;  

𝜃 →
𝜋

2
− 𝜃;           (1) 

𝜕𝜃 → −𝜕𝜃. 

Figure 1. The supersonic flow past a cone (𝝌 is a half of vertical angle of cone, 𝒆𝑹, 𝒆𝜽, 𝒆𝝋 are the unity orts 

of spherical system of coordinates, 𝒗𝟎 is the vector of incident flow velocity; we measure angle θ from xy 

plane (not from z axis, as usually)). 

Tunnel mathematics equations applied to the components of the vector velocity field in Cartesian 

coordinate system look like this [14]: 

𝜕𝑢

𝜕𝑥
+ 

(𝑢𝑤)𝑦

(𝑥2+𝑦2)3 2⁄ (2 + (
𝑦

𝑥
)
2

) +
1

√𝑥2+𝑦2
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=
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(𝑥2+𝑦2)3 2⁄ (2 + (
𝑥

𝑦
)
2

) −
1

√𝑥2+𝑦2
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= − 
2𝑦

√𝑥2+𝑦2
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+

1

𝑥
∙
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1
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∙
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𝜕𝑧
−

2𝑦

(𝑥2+𝑦2)

𝜕(𝑣𝑤)

𝜕𝑧
;       (2) 

 
𝜕𝑣

𝜕𝑥
+ 

(𝑣𝑤)𝑦

(𝑥2+𝑦2)3 2⁄ −
1

√𝑥2+𝑦2

𝜕(𝑢𝑤)

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
+ 

(𝑢𝑤)𝑥

(𝑥2+𝑦2)3 2⁄ −
1

√𝑥2+𝑦2

𝜕(𝑣𝑤)

𝜕𝑦
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2𝑦
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+
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∙
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1
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∙
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= −
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∙
𝜕(𝑣𝑤)
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𝑖
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∙
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   = −
𝜕𝑢

𝜕𝑧
− 𝑖

𝜕𝑣

𝜕𝑧
+

𝑖
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∙
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1
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∙
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𝜕𝑧
.    (4) 

It is easy seen that at 𝑤 = 0 these equations transform into ordinary plane Cauchy-Riemann conditions 

(12) and (13). 

∆𝑢 = 0;            (5) 

∆𝑣 = 0;            (6) 

(𝑢𝑤)𝑦3 = (𝑣𝑤)𝑥3;          (7) 

∆(𝑢𝑤) =
(𝑣𝑤)𝑥

𝑦3 −
(𝑦2−𝑥2)

𝑥𝑦
𝐶𝑖 − 𝐶𝑟;         (8) 
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∆(𝑣𝑤) =
(𝑢𝑤)𝑦

𝑥3 −
(𝑦2−𝑥2)

𝑥𝑦
𝐶𝑟 + 𝐶𝑖;         (9) 

where constants 𝐶𝑟 and 𝐶𝑖 are included in the following relations: 
𝜕(𝑢𝑤)

𝜕𝑥
+ 𝑖

𝜕(𝑢𝑤)

𝜕𝑦
= (𝐶𝑟 + 𝑖𝐶𝑖)𝑥;         (10) 

𝜕(𝑣𝑤)

𝜕𝑥
+ 𝑖

𝜕(𝑣𝑤)

𝜕𝑦
= −(𝐶𝑟 + 𝑖𝐶𝑖)𝑦.         (11) 

Relations (10) and (11) result from (4). 

In (5), (6), (8), (9) ∆ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2  is the Laplace operator on the xy plane. 

Also, the ordinary Cauchy-Riemann conditions hold on the xy plane [8]: 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
;            (12) 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
.           (13) 

Functions u, v, w in (2) – (13) correspond to the vector velocity field components in Cartesian coordinate 

system. So, such relations connect vector velocity field components in Cartesian and modified (1) spherical 

coordinate systems: 

𝑢 = 𝑣𝑥 = cos𝜑 (𝑣𝑅 cos 𝜃 − 𝑣𝜃 sin 𝜃) − 𝑣𝜑 sin𝜑 ;       (14) 

𝑣 = 𝑣𝑦 = sin 𝜑 (𝑣𝑅 cos 𝜃 − 𝑣𝜃 sin 𝜃) + 𝑣𝜑 cos𝜑 ;       (15) 

𝑤 = 𝑣𝑧 = 𝑣𝑅 sin 𝜃 + 𝑣𝜃 cos 𝜃 ;         (16) 

There are also inverse transition formulas: 

𝑣𝑅 = cos 𝜃 (𝑢 cos 𝜑 + 𝑣 sin𝜑) + 𝑤 sin 𝜃 ;        (17) 

𝑣𝜃 = −sin 𝜃 (𝑢 cos 𝜑 + 𝑣 sin𝜑) + 𝑤 cos 𝜃 ;       (18) 

𝑣𝜑 = −𝑢 sin𝜑 + 𝑣 cos 𝜑 ;          (19) 

and ordinary transition formulas between Cartesian and modified (1) spherical coordinate systems hold: 

𝑥 = 𝑅 cos 𝜃 cos𝜑 ;          (20) 

𝑦 = 𝑅 cos 𝜃 sin𝜑 ;          (21) 

𝑧 = 𝑅 sin 𝜃.           (22) 

Recall that we work in modified spherical system of coordinates; i. e. we measure angle θ from xy plane (not 

from z axis as usually) (Fig. 1). 

Taking into account that problem of flow past a cone has axial symmetry, i.e. 𝑣𝜑 = 0, we can obtain from (14) – 

(16) following relations: 

 

(𝑢𝑤) = cos𝜑 ((𝑣𝑅
2 − 𝑣𝜃

2)
sin 2𝜃

2
+ 𝑣𝑅𝑣𝜃 cos 2𝜃) ;       (23) 

(𝑣𝑤) = sin𝜑 ((𝑣𝑅
2 − 𝑣𝜃

2)
sin 2𝜃

2
+ 𝑣𝑅𝑣𝜃 cos 2𝜃) ;       (24) 

Therefore, taking into account (20) and (21) we can conclude that for our problem with axial symmetry we have 

following exact relation: 

(𝑢𝑤)𝑦 = (𝑣𝑤)𝑥.           (25) 

We see that (25) differs from (7). 

Also, using well known formula 

∆(𝑢𝑤) = 𝑢∆𝑤 + 𝑤∆𝑢 + 2∇𝑢∇𝑤,         (26) 

and taking into account (5) and assumption that ∆𝑤 = 0, we obtain the relation which work on xy plane: 

∆(𝑢𝑤) = 2∇𝑢∇𝑤 = 2 (
𝜕𝑢

𝜕𝑅

𝜕𝑤

𝜕𝑅
+

𝜕𝑢

𝑅𝜕𝜃

𝜕𝑤

𝑅𝜕𝜃
).        (27) 

Using (14), (16), (8) and (24) we arrive to the following approximate formulas: 

(
𝜕𝑣𝑅

𝜕𝑅
)
2

− (
𝜕𝑣𝜃

𝜕𝑅
)
2

+
1

𝑅2 ((
𝜕𝑣𝑅

𝜕𝜃
− 𝑣𝜃)

2

− (
𝜕𝑣𝜃

𝜕𝜃
+ 𝑣𝑅)

2

) ~  𝑣𝑅
2 − 𝑣𝜃

2;     (28) 

𝜕𝑣𝑅

𝜕𝑅
∙
𝜕𝑣𝜃

𝜕𝑅
+

1

𝑅2 (
𝜕𝑣𝑅

𝜕𝜃
− 𝑣𝜃) (

𝜕𝑣𝜃

𝜕𝜃
+ 𝑣𝑅) ~ 𝑣𝑅𝑣𝜃  .       (29) 

Recall that (28) and (29) work on xy plane (𝑧 = 𝑐𝑜𝑛𝑠𝑡) only! 
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3. Results and Discussions 

4.1 Construction of vector velocity fields 

Using (2) – (4), (12), (13) and (25) we can find the expressions for functions (uw) and (vw): 

 

(𝑢𝑤) =
𝐴0

2𝑟0
2𝑎

𝑦(𝑥2+𝑦2)
exp [𝑧√𝑥2 + 𝑦2 (

4𝑥𝑦

(𝑥2+𝑦2)2
+

1

𝑥𝑦
)] ;      (30) 

 

(𝑣𝑤) =
𝐴0

2𝑟0
2𝑎

𝑥(𝑥2+𝑦2)
exp [𝑧√𝑥2 + 𝑦2 (

4𝑥𝑦

(𝑥2+𝑦2)2
+

1

𝑥𝑦
)] ;      (31) 

where 𝐴0, 𝑟0, 𝑎 are the constants; [𝐴0] =
𝑚

𝑠𝑒𝑐
; [𝑟0] = [𝑎] = 𝑚. 

Now we can construct the components of vector velocity field in Cartesian coordinate system. In order 

to satisfy (25) we select the components of analytical function [8] in following manner: 

𝑢 = 𝐴0
𝑥

𝑎
;          (32) 

𝑣 = 𝐴0
𝑦

𝑎
.          (33) 

It is easy seen that (5) and (6) are satisfied automatically. 

𝑤 = 𝐴0
(𝑟0𝑎)2

𝑥𝑦(𝑥2+𝑦2)
exp [𝑧√𝑥2 + 𝑦2 (

4𝑥𝑦

(𝑥2+𝑦2)2
+

1

𝑥𝑦
)] ;      (34) 

Now using (17), (18), (20) – (22) we can obtain the components of vector velocity field in modified (1) spherical 

coordinate system: 

𝑣𝑅 = 𝐴0 (
(𝑅 cos 𝜃)

𝑎
cos 𝜃 + sin 𝜃

2(𝑟0𝑎)2

𝐴2(𝑅 cos 𝜃)4
exp[2𝐴1 𝑡𝑎𝑛 𝜃]) ;     (35) 

𝑣𝜃 = 𝐴0 (−
(𝑅 cos𝜃)

𝑎
sin 𝜃 + cos 𝜃

2(𝑟0𝑎)2

𝐴2(𝑅 cos𝜃)4
exp[2𝐴1 𝑡𝑎𝑛 𝜃]) ;     (36) 

where 𝐴1 𝑎𝑛𝑑 𝐴2 are dimensionless constants (they depend on φ). 

It is well known that a shock wave on a supersonic cone is formed as a result of interaction of incident 

and reflected flows of fluid. So, it is naturally to find a shape of a shock wave as a result of intersection of 

mathematical surfaces describing the vector velocity fields of incident and reflected flows. In order to do this, we 

need to impose the boundary conditions on (35) and (36). 

 

In front of the shock wave (Figure 1) the velocity of incident flow (without taking into account the 

interaction with reflected flow) has such simple form: 

𝑣𝑅 = 𝑣0 sin 𝜃 and 𝑣𝜃 = 𝑣0 cos 𝜃;         (37) 

where 𝑣0 is a magnitude of velocity of incident flow: 

𝑣 = √𝑣𝑅
2 + 𝑣𝜃

2 = 𝑣0.         (38) 

Behind the shock wave such boundary condition holds: 

at 𝜃 = 𝜃𝑤 =
𝜋

2
− 𝜒 should be 𝑣𝑅 = 0 and 𝑣𝜃 = 0;       (39) 

where 𝜒 is a half of vertical angle of cone (Figure 1); this is so called non-slip boundary condition. 

In order to satisfy (39) the relations (35) and (36) must take such form: 

𝑣𝑅 = 𝐴0 (
(𝑅 cos 𝜃)

𝑎
cos 𝜃 + + sin 𝜃

2(𝑟0𝑎)2

𝐴2(𝑅 cos 𝜃)4
[
𝐴2(𝑅 cos𝜃𝑤)5

2(𝑟0𝑎)2𝑎

1

𝑡𝑎𝑛 𝜃𝑤
]

𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤
cos 𝜋

𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃𝑤
) ;  (40) 

𝑣𝜃 = 𝐴0 (−
(𝑅 cos𝜃)

𝑎
sin 𝜃 + cos 𝜃

2(𝑟0𝑎)2

𝐴2(𝑅 cos𝜃)4
[
𝐴2(𝑅 cos 𝜃𝑤)5

2(𝑟0𝑎)2𝑎
𝑡𝑎𝑛 𝜃𝑤]

𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤
) ;   (41) 

The magnitude of velocity behind the shock wave take such form: 

𝑣 = √𝑣𝑅
2 + 𝑣𝜃

2 = 𝐴0 ((
𝑅 cos𝜃

𝑎
)
2

+ sin 2𝜃
2(𝑟0𝑎)2

𝑎𝐴2(𝑅 cos 𝜃)3
[
𝐴2(𝑅 cos𝜃𝑤)5

2(𝑟0𝑎)2𝑎
]

𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤
× ([𝑡𝑎𝑛 𝜃𝑤]

−
𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤 ∙ cos 𝜋
𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃𝑤
−

[𝑡𝑎𝑛 𝜃𝑤]
𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤) + (
2(𝑟0𝑎)2

𝐴2(𝑅 cos 𝜃)4
)
2

× [
𝐴2(𝑅 cos𝜃𝑤)5

2(𝑟0𝑎)2𝑎
]

2 𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤
× ([𝑡𝑎𝑛 𝜃𝑤]

−
2𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤 ∙ sin2 𝜃 + [𝑡𝑎𝑛 𝜃𝑤]
2 𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜃𝑤 ∙ cos2 𝜃))

1

2

. 

        (42) 

 

Below in Figure. 2 – 4 the surfaces of discontinuity for component 𝑣𝑅 formed by (37) and (40) are shown at 𝜒 =
10° (𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑)) and different velocities of incident flow. 
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Figure 2. Surface of discontinuity for component 𝒗𝑹 formed by (37) and (40) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (supersonic case). 

 
Figure 3. Surface of discontinuity for component 𝒗𝑹 formed by (37) and (40) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟑𝟓𝟎 
𝒎

𝒔𝒆𝒄
 (transonic case). 
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Figure 4. Surface of discontinuity for component 𝒗𝑹 formed by (37) and (40) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟏𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (subsonic case). 

 

It is easy seen from Figs. 2 – 4 that the lower the velocity of incident flow 𝑣0, the smaller the values 

of the angles 𝜃 the shock wave acquires (we measure angle θ from xy plane (not from z axis as usually) 

(Figure 1)). This behavior of the shock wave fully corresponds to the physical pattern of phenomena. 

 

Below in Figs. 5 – 7 the surfaces of discontinuity for component 𝑣𝑅 formed by (37) and (40) are 

shown at 𝜒 = 20° (𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑)) and different velocities of incident flow. 

 
Figure 5. Surface of discontinuity for component 𝒗𝑹 formed by (37) and (40) 

at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (supersonic case).
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Figure 6. Surface of discontinuity for component 𝒗𝑹 formed by (37) and (40) 

at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟑𝟓𝟎 
𝒎

𝒔𝒆𝒄
 (transonic case). 

 

 
Figure 7. Surface of discontinuity for component 𝒗𝑹 formed by (37) and (40) 

at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟏𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (subsonic case). 

 

Comparing Figs. 5 – 7 with Figs. 2 – 4 we see that the larger the vertical angle of cone, the smaller the values 

of the angles 𝜃 the shock wave acquires. This behavior of the shock wave fully corresponds to the physical 

pattern of phenomena as well. 
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Below in Figs. 8 – 10 the surfaces of discontinuity for component 𝑣𝜃  formed by (37) and (41) are shown at 

𝜒 = 10° (𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑)) and different velocities of incident flow. 

 
Figure 8. Surface of discontinuity for component 𝒗𝜽 formed by (37) and (41) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (supersonic case). 

 
Figure 9. Surface of discontinuity for component 𝒗𝜽 formed by (37) and (41) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟑𝟓𝟎 
𝒎

𝒔𝒆𝒄
 (transonic case). 
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Figure 10. Surface of discontinuity for component 𝒗𝜽 formed by (37) and (41) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟏𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (subsonic case). 

 

Below in Figs. 11 – 13 the surfaces of discontinuity for component 𝑣𝜃  formed by (37) and (41) are shown at 

𝜒 = 20° (𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑)) and different velocities of incident flow. 

 
Figure 11. Surface of discontinuity for component 𝒗𝜽 formed by (37) and (41) 

at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (supersonic case). 
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Figure 12. Surface of discontinuity for component 𝒗𝜽 formed by (37) and (41) 

at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟑𝟓𝟎 
𝒎

𝒔𝒆𝒄
 (transonic case). 

 
Figure 13. Surface of discontinuity for component 𝒗𝜽 formed by (37) and (41) 

at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟏𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (subsonic case). 

 

Behavior of the surfaces of discontinuity for component 𝑣𝜃  is fully similar to that for component 

𝑣𝑅. Also, it is seen that formulas (40) and (41) allow to correctly determine the values of angles 𝜃 for the 

shock wave only at approximately 𝑅 ≤ 1.2 meter. Some discrepancies of angles 𝜃 for the surfaces of 

discontinuity for corresponding components 𝑣𝜃  and 𝑣𝑅 may indicate that the shock wave has a certain 

thickness (such uneven thickness of the shock wave is a dominantly consequence of “smeared” spatial change 

of component 𝑣𝑅). Figs. 8 – 13 shows that surfaces of discontinuity for component 𝑣𝜃  are more like a right 

cone than ones for component 𝑣𝑅. This similarity becomes more and more evident at higher speeds and 

smaller vertical angles of cone. 
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Tending to infinity (especially for small 𝑅) of graphs corresponding to (40) and (41) in Figs. 2 – 13 results 

from the presence of 𝑅 in denominator. However, this problem can be solved by way corresponding 

adjustment of calibration coefficients 𝐴2, 𝑟0, 𝑎 to which at graph building the value 1 was assigned. 

Where graphs corresponding to (40) and (41) in Figs. 2 – 13 reach maximums (especially it is well seen for 

small 𝑅) the boundary layer begins. So, we can conclude that shock waves intersect boundary layers on all 

figures. 

 

Below in Figs. 14, 15 the surfaces of discontinuity for velocity magnitude 𝑣 formed by (38) and (42) are 

shown at 𝜒 = 10° (𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑)) and different velocities of incident flow. 

 

Figure 14. Surface of discontinuity for velocity magnitude 𝒗 formed by (38) and (42)  

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (supersonic case). 

 
Figure 15. Surface of discontinuity for velocity magnitude 𝒗 formed by (38) and (42) 

at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟑𝟓𝟎 
𝒎

𝒔𝒆𝒄
 (transonic case).
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Below in Figs. 16, 17 the surfaces of discontinuity for velocity magnitude 𝑣 formed by (38) and (42) are 

shown at 𝜒 = 20° (𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑)) and different velocities of incident flow. 

 
Figure 16. Surface of discontinuity for velocity magnitude 𝑣 formed by (38) and (42) 

at 𝜒 = 20° (𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑)) and 𝑣0 = 500 
𝑚

𝑠𝑒𝑐
 (supersonic case). 

 
Figure 17. Surface of discontinuity for velocity magnitude 𝑣 formed by (38) and (42) 

at 𝜒 = 20° (𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑)) and 𝑣0 = 350 
𝑚

𝑠𝑒𝑐
 (transonic case). 

 

 

It is seen from Figs. 14 – 17 that the smaller the vertical angle of cone and the higher the velocity of incident 

flow, the better the shape of shock wave coincides with a right cone. 

In general case, the shape of shock wave is a flared cone. 
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4.2 Calculation of the temperature distribution. 

4.2.1 Preliminary calculations (equation of continuity, Navier-Stokes equations for a compressible 

flow). 

Mathematical analysis of (30) and (31) in the light of relations (2) – (4) shows that relations (30) and (31) 

are fulfilled on the intersection of two surfaces: 

 

𝑧 = −
𝑥3(𝑥2+𝑦2)3/2

𝑦((𝑦2−𝑥2)2+8𝑥4)
;         (43) 

 

𝑧 = −
𝑦3(𝑥2+𝑦2)3/2

𝑥((𝑦2−𝑥2)2+8𝑦4)
.         (44) 

 

 

The intersection of (43) and (44) is shown below on Figure 18. 

 

 
Figure 18. Intersection of surfaces (43) (blue) and (44) (cyan). 

 

It is seen from Figure 18 that parts of the intersection of surfaces (43) and (44) at 𝑦 = ± 𝑥 resemble the shape 

of a shock wave on a supersonic cone. Taking into account (25), (20) (21) and axial symmetry of our problem, 

we can conclude that relations (30) and (31) and their derivatives are well suited to describe a supersonic 

flow past a cone. 

 

 

Using (34) and (2) – (4) we can find Laplacian of w on the xy plane. 

 

∆𝑤 =
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 =
𝑎

𝐴0

(𝑢𝑤)

𝑥(𝑥2+𝑦2)
(5 + 2 (

𝑥2+𝑦2

𝑥𝑦
)
2

) =
𝑎

𝐴0

(𝑣𝑤)

𝑦(𝑥2+𝑦2)
(5 + 2 (

𝑥2+𝑦2

𝑥𝑦
)
2

). (45) 

 

We used (25) in (45). 
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The main theorem of tunnel mathematics allows to find the temperature distribution for planes z = const (it 

is similar to the constructing of slices of brain at MRI procedure). Further, collecting these “slices”, we can 

obtain full spatial distribution of the temperature around a supersonic cone. 

 

4.2.1.1 Equation of continuity 
For compressible fluid the density ρ is the variable quantity, which is to be determined from equation of 

continuity: 

 

𝜌𝒅𝒊𝒗�⃗� + �⃗� 𝒈𝒓𝒂𝒅𝜌 = 0.         (46) 

 

Taking into account (16), (32) – (34) we can obtain such relation for the divergence of velocity field: 

 

∇ ∙ �⃗� = 𝒅𝒊𝒗�⃗� =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 2(

𝐴0

𝑎
+

𝐴1

𝑅 cos 𝜃
(𝑣𝑅 sin 𝜃 + 𝑣𝜃 cos 𝜃)). (47) 

 

We will seek the solution of our problem on the plane 

 

𝑧 = 𝑅 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡 = 0.5.        (48) 

 

Direction of motion is shown below in Figure 19. 

 

 
Figure 19. Direction of motion on the plane 𝒛 = 𝟎. 𝟓 (𝝌 is a half of vertical angle of cone; 𝜽𝒘 =

𝝅

𝟐
− 𝝌 

is the angle 𝜽 corresponding to the wall of cone). 

 

Analyzing (40) and (41) we see that it is easier to fulfill the integration of (46) by 𝑑𝑅 than by 𝑑𝜃. So, taking 

differential from (48) we obtain such relation: 

 

𝑑𝜃 = −
tan 𝜃

𝑅
𝑑𝑅.          (49) 
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Further, we integrate (46) in front of the shock wave (i. e. applying formulas (37) for incident flow) and 

behind the shock wave (i. e. applying formulas (40) and (41) for reflected flow). 

Finally, we obtain such relations. In front of the shock wave: 

 

𝜌 = 𝜌0 (
𝑅

𝑅0
)

2𝐴1 tan𝜃

cos2𝜃
∙ exp [0.5 ∙

2𝐴0

𝑎𝑣0 𝑐𝑜𝑠 2𝜃
] ;       (50) 

 

where 𝑅0 is a constant, [𝑅0] = 𝑚; 𝜌0 is a density of fluid at 𝑅 → ∞, 𝜃 → 0, [𝜌0] =
𝑘𝑔

𝑚3. 

Behind the shock wave: 

 

𝜌 = 𝜌0 (
𝑅

𝑅0
)

2𝐴1𝛿 tan𝜃

𝛾
∙ exp [0.5 ∙

2𝐴0

5(1−𝛼)𝛽𝛾𝜉𝑅1𝐴0
∙ 𝑅4−5𝛼]  

 = 𝜌0 (
𝑅

𝑅0
)

2𝐴1𝛿 tan𝜃

𝛾
∙ exp [0.5 ∙

2𝐴0

5(1−𝛼)𝑅1
(𝑣𝜃 − 𝑣𝑅 tan 𝜃)−1] ;    (51) 

 

where 𝑅1 is a constants, [𝑅1] = 𝑚; 𝑣𝑅  𝑎𝑛𝑑 𝑣𝜃  are taken from (40) and (41); besides, 

 

𝛼 =
𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃𝑤
;          (52) 

𝛽 =
2

𝐴2(cos𝜃)4
[
𝐴2(cos 𝜃𝑤)5

2
]
𝛼

;        (53) 

𝛾
𝛿⁄ = cos 𝜃 (𝑡𝑎𝑛 𝜃𝑤)𝛼   − +⁄   sin 𝜃 tan 𝜃  (𝑡𝑎𝑛 𝜃𝑤)−𝛼 ∙ cos 𝜋𝛼 ;    (54) 

𝜉 =
(𝑟0𝑎)2

((𝑟0𝑎)2𝑎)𝛼
; [𝜉] = 𝑚4−5𝛼 .        (55) 

 

The graphs corresponding to (50) and (51) are shown below in Figure 20. 

 
 

Figure 20. The graphs corresponding to (50) (blue) and (51) (cyan) at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) 

and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 (supersonic case).
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Constructing graphs in Figs. 20 we assume for constants in (50) and (51) such values: 

 

𝜌0 = 1 
𝑘𝑔

𝑚3 ; (density of air at 𝑇 ≈ 300 𝐾, 𝑝 ≈ 105𝑃𝑎); 

𝑅0 = 1 𝑚; 
𝑅1 = 1 𝑚; 
𝐴1 = 1; 

𝐴0 = 𝑣0 = 500 
𝑚

𝑠𝑒𝑐
; 

𝑟0 = 1 𝑚; 
𝑎 = 10 𝑚; 
𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑). 
 

Comparing Figs. 20 and 19, we see that at 𝑅 ≈ 0.5 𝑚 and 𝜃 ≈ 𝜃𝑤 = 1.4 𝑟𝑎𝑑 density reaches several peaks. 

This behavior of density can be explained by compressibility of fluid past a cone. Further in a certain range 

of coordinates 𝑅 and 𝜃, the shock wave extends. It is obviously that shock wave has a certain thickness. The 

Figure 21 below shows a graph corresponding to (51) separately, where the cascading air density is clearly 

tracked on the plane 𝑧 = 0.5 of supersonic cone. 

 
Figure 21. The graph corresponding to (51) at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 

𝒎

𝒔𝒆𝒄
 

(supersonic case). 

 

 

4.2.1.2 Navier-Stokes equations for a compressible flow. 
For a supersonic compressible flow, the dynamic viscosity µ must be regarded as dependent on the 

space coordinate, because µ varies considerably with temperature, and the changes in velocity and pressure 

together with the heat due to friction bring about considerable temperature variations. 
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So, in Cartesian coordinate system the Navier-Stokes equations for a compressible flow look like this ([2], 

we neglect by gravitational forces comparing with pressure and thermal forces): 

 

𝜌
𝐷𝑢

𝐷𝑡
= −

𝜕𝑃

𝜕𝑥
+

𝜕

𝜕𝑥
(𝜇 (2

𝜕𝑢

𝜕𝑥
−

2

3
𝒅𝒊𝒗�⃗� )) +

𝜕

𝜕𝑦
(𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)) +

𝜕

𝜕𝑧
(𝜇 (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)) ; (56) 

 

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑃

𝜕𝑦
+

𝜕

𝜕𝑦
(𝜇 (2

𝜕𝑣

𝜕𝑦
−

2

3
𝒅𝒊𝒗�⃗� )) +

𝜕

𝜕𝑧
(𝜇 (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)) +

𝜕

𝜕𝑥
(𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)) ; (57) 

 

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑃

𝜕𝑧
+

𝜕

𝜕𝑧
(𝜇 (2

𝜕𝑤

𝜕𝑧
−

2

3
𝒅𝒊𝒗�⃗� )) +

𝜕

𝜕𝑥
(𝜇 (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)) +

𝜕

𝜕𝑦
(𝜇 (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)). (58) 

 

The equation for temperature variations has such form ([2]): 

 

𝜌𝑐𝑝
𝑑𝑇

𝑑𝑡
=

𝑑𝑃

𝑑𝑡
+

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝜇Ф;   (59) 

 

where 
𝐷

𝐷𝑡
 ,

𝑑

𝑑𝑡
 are the substantial derivatives; T is a temperature; 𝑐𝑝 [𝐽/𝑘𝑔 𝐾]  represents the specific heat at 

constant pressure per unit mass (in general 𝑐𝑝 depends on temperature, but we will assume its value as a 

constant equal to 1090 𝐽/𝑘𝑔 𝐾 (the air at 800 K)); k [𝐽 𝑚 𝑠𝑒𝑐⁄ 𝐾] is a thermal conductivity; Ф [1 𝑠𝑒𝑐2⁄ ] 
represents the dissipation function: 

 

Ф = 2((
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

) + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)
2

−
2

3
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)
2

. 

        (60) 

We assume that both the viscosity µ and the thermal conductivity k for supersonic case depend from the 

temperature in such manner: 

 

𝜇 = 𝜇0 (
𝑇

𝑇0
)
𝑛

;         (61) 

 

𝑘 = 𝑘0 (
𝑇

𝑇0
)
𝑛

;          (62) 

 

where 𝜇0 = 0.00001 𝑃𝑎 ∙ 𝑠𝑒𝑐; 𝑘0 = 0.0242 
𝐽

𝑚 sec𝐾
; 𝑇0 = 300 𝐾 (temperature of incident flow); n is a real 

number. We introduced (62) in order to eliminate from our considerations the Prandtl’s number. 

 

The equations (56) – (58) acquires such tensor form for steady motion of fluid: 

 

𝜌𝑣𝑘
𝜕𝑣𝑖

𝜕𝑥𝑘
= −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜇 (

𝜕2𝑣𝑖

𝜕𝑥𝑘𝜕𝑥𝑘
+

1

3

𝜕

𝜕𝑥𝑖
(
𝜕𝑣𝑙

𝜕𝑥𝑙
)) + (

𝜕𝑣𝑖

𝜕𝑥𝑘
+

𝜕𝑣𝑘

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑘

𝜕𝑣𝑙

𝜕𝑥𝑙
) × (

𝜕𝜇

𝜕𝑥𝑘
) ; (63) 

 

where 𝛿𝑖𝑘 is the Kronecker symbol: 𝛿𝑖𝑘 = {
1, 𝑖𝑓 𝑖 = 𝑘;
0, 𝑖𝑓 𝑖 ≠ 𝑘.

  

Last term in (63) represent a tensor product. 

 

So, Navier-Stokes equations (56) – (59) in modified (1) spherical polar coordinates assume such form: 

 

𝜌 (𝑣𝑅
𝜕𝑣𝑅

𝜕𝑅
+ 𝑣𝜃

𝜕𝑣𝑅

𝑅𝜕𝜃
−

𝑣𝜃
2

𝑅
)  

= −
𝜕𝑃

𝜕𝑅
+ 𝜇 (∆𝑣𝑅 −

2𝑣𝑅

𝑅2 −
2

𝑅2 cos𝜃

𝜕(𝑣𝜃 cos 𝜃)

𝜕𝜃
+

1

3

𝜕

𝜕𝑅
(𝒅𝒊𝒗�⃗� ))  

  + 2
𝜕𝜇

𝜕𝑅
(
𝜕𝑣𝑅

𝜕𝑅
−

1

3
𝒅𝒊𝒗�⃗� ) −

𝜕𝜇

𝑅𝜕𝜃
(

𝜕𝑣𝑅

𝑅𝜕𝜃
+

𝜕𝑣𝜃

𝜕𝑅
−

𝑣𝜃

𝑅
);  (64) 

 

𝜌 (𝑣𝑅
𝜕𝑣𝜃

𝜕𝑅
+ 𝑣𝜃

𝜕𝑣𝜃

𝑅𝜕𝜃
+

𝑣𝑅𝑣𝜃

𝑅
)  

=
𝜕𝑃

𝑅𝜕𝜃
− 𝜇 (∆𝑣𝜃 −

2

𝑅2

𝜕𝑣𝑅

𝜕𝜃
+

𝑣𝜃

(𝑅 cos𝜃)2
+

1

3

𝜕

𝑅𝜕𝜃
(𝒅𝒊𝒗�⃗� ))  

  + 
𝜕𝜇

𝜕𝑅
(

𝜕𝑣𝑅

𝑅𝜕𝜃
+

𝜕𝑣𝜃

𝜕𝑅
−

𝑣𝜃

𝑅
) − 2

𝜕𝜇

𝑅𝜕𝜃
(

𝜕𝑣𝜃

𝑅𝜕𝜃
+

𝑣𝑅

𝑅
−

1

3
𝒅𝒊𝒗�⃗� ); (65) 
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𝜌𝑐𝑝 (𝑣𝑅
𝜕𝑇

𝜕𝑅
+ 𝑣𝜃

𝜕𝑇

𝑅𝜕𝜃
) = 𝑣𝑅

𝜕𝑃

𝜕𝑅
+ 𝑣𝜃

𝜕𝑃

𝑅𝜕𝜃
+ 𝑘0 (

𝑇

𝑇0
)
𝑛

(
1

𝑅2

𝜕

𝜕𝑅
(𝑅2 𝜕𝑇

𝜕𝑅
) +

1

𝑅2 cos𝜃

𝜕

𝜕𝜃
(cos 𝜃

𝜕𝑇

𝜕𝜃
)) +

𝑘0𝑛

𝑇0
(

𝑇

𝑇0
)
𝑛−1

((
𝜕𝑇

𝜕𝑅
)
2

+ (
𝜕𝑇

𝑅𝜕𝜃
)
2

)  + 𝜇0 (
𝑇

𝑇0
)
𝑛

Ф. (66) 

 

The equation with 𝑣𝜑 disappears. Laplacians ∆𝑣𝑅 and ∆𝑣𝜃 in (64) and (65) are the spatial ones. 

 

Using (60), (32) – (34) and (45) we arrive to the following relation for the dissipation function in (66): 

 

 

Ф = 2(2 (
𝐴0

𝑎
)
2

+ (𝒅𝒊𝒗�⃗� −
2𝐴0

𝑎
)
2

) +
(𝑢𝑤)

𝑥
(∆𝑤 −

(𝑢𝑤)(𝑥2+𝑦2)

𝑥(𝑥𝑦)2
) −

2

3
(𝒅𝒊𝒗�⃗� )

2
. (67) 

 

Relation (67) works on the plane 𝑧 = 𝑐𝑜𝑛𝑠𝑡. 

 

4.2.2 Calculation of the temperature distribution. 

As we have already found the components of vector velocity field 𝑣𝑅 and 𝑣𝜃 , we need, in principle, only the 

equations (64) and (65) to find the temperature distribution around supersonic cone. Equation (66) can be 

used for auxiliary goals. The main theorem of tunnel mathematics, which is expressed in the equation (4), 

allows to integrate equations (64) and (65) on our plane 𝑧 = 0.5. In order to do this, we vary in (64) and (65) 

the variable of integration 𝑑𝜃 by 𝑑𝑅 using (49), after what we eliminate pressure 𝑃 from these equations. 

Finally, we arrive to the following simple ordinary differential equation for dynamic viscosity (and 

consequently for the temperature (61)) in the area behind the shock wave: 

 

 

𝛼1
𝜕𝜇

𝜕𝑅
+ 𝛾1𝜇 − 𝛽1 = 0;         (68) 

 

where 

 

 

𝛼1 =
𝜕𝑣𝑅

𝜕𝑅
(3 − (tan 𝜃)−2) + (tan 𝜃)−1 𝜕𝑣𝜃

𝜕𝑅
(3 − (tan 𝜃)2) −

2𝑣𝑅

𝑅
  

     +(tan 𝜃)−1 𝑣𝜃

𝑅
((tan 𝜃)2 − 1);   (69) 

 

 

𝛾1 = ∆𝑣𝑅 + (tan 𝜃)∆𝑣𝜃 +
2

𝑅 tan 𝜃
(
𝜕𝑣𝜃

𝜕𝑅
+ tan 𝜃

𝜕𝑣𝑅

𝜕𝑅
) −

2𝑣𝑅

𝑅2 +
𝑣𝜃 tan𝜃

(𝑅 cos𝜃)2
;  (70) 

 

 

𝛽1 = 𝜌 ((
𝜕𝑣𝑅

𝜕𝑅
− tan 𝜃

𝜕𝑣𝜃

𝜕𝑅
) (𝑣𝑅 − 𝑣𝜃 (tan 𝜃)−1) −

𝑣𝜃 tan 𝜃

𝑅
(𝑣𝑅 + 𝑣𝜃 (tan 𝜃)−1)).   

      (71) 

 

 

Laplacians ∆𝑣𝑅  𝑎𝑛𝑑 ∆𝑣𝜃  in (70) now should be calculated on the plane 𝑧 = 𝑐𝑜𝑛𝑠𝑡, not in the space. 

 

Similar to the case of a compressible fluid entrained by hypersonic rotating disk in [15] we have again got 

very simple differential equation for the temperature distribution. 

 

Someone can notice that we had not the right to integrate equations (64) and (65) on the plane 𝑧 = 𝑐𝑜𝑛𝑠𝑡 in 

such simple way. To which we dare to object that spatial expressions (40) and (41) for 𝑣𝑅 and 𝑣𝜃  in the area 

behind the shock wave are not spatial in the full sense of the word. They have been obtained by means 

relations of tunnel mathematics (2) – (4) which in specific way take into account the variations of 𝑣𝑅 and 𝑣𝜃  

on the plane  

𝑧 = 𝑐𝑜𝑛𝑠𝑡. So, fulfilling the integration of Navier-Stokes equations on the plane, we can consider variables 

𝑅 and 𝜃 as independent, what allows to simplify the integration significantly! 
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In order to simplify our calculations, we will seek such analytical solution of (68) which is more accurate in 

the vicinity of 

 

𝛼 =
𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃𝑤
=

2

3
≈ 0.6.         (72) 

 

To find, for instance, exact analytical solution of (68) in the vicinity of cone wall additional terms must be 

taken into account. 

 

Using relations (18), (20) – (22), (23), (24), (32), (33), (34), (40), (41), (45) and (61) we arrive to the 

following approximate analytical solution of (68): 

 

 

𝑇 = 𝑇𝑜 (
1

𝜇0
𝑅2

𝛿6𝑅−(2+𝛿6) ∙ (𝛼6(𝜌 − 𝛽6𝑅
−2𝜌′) + 𝑅2𝐶) ∙ exp [

0.5 𝑠𝑖𝑛 𝜃

5(𝛼−1)
𝛴])

1

𝑛
;   

           (73) 

 

 

where the density 𝜌 is taken from (51); besides, 

 

𝜌′ = 𝜌0 exp[0.5𝛿4
′𝑅] ; 𝜌′ is the oscillating density;      (74) 

𝐶 = 𝜇0 (
𝑇𝑤

𝑇0
)
𝑛

; where 𝑇𝑤 is the temperature of the cone wall; 𝑇0 is the temperature of incident flow; 

           (75) 

 

𝛴 = (𝑅 (
𝜕𝑣𝑅

𝜕𝑅
(3 − (tan 𝜃)−2) +

𝜕𝑣𝜃

𝜕𝑅
cot 𝜃 (3 − (tan 𝜃)2)) + 𝑣𝜃 cot 𝜃 ((tan 𝜃)2 − 1) − 2𝑣𝑅)

−1

× (
𝐴0

𝑎
(2 −

(cos 𝜃)−2) −
4𝐴3𝑎

𝐴0(𝑐𝑜𝑠 𝜃)3
((𝑣𝑅

2 − 𝑣𝜃
2)

𝑠𝑖𝑛 2𝜃

2
+ 𝑣𝑅𝑣𝜃 𝑐𝑜𝑠 2𝜃) ∙ 𝑅−2) ;    (76) 

In (76) 𝛴 is the vortical factor; 𝑣𝑅 , 𝑣𝜃 ,
𝜕𝑣𝑅

𝜕𝑅
,
𝜕𝑣𝜃

𝜕𝑅
 are taken from (40) and (41). 

𝑅2 ≈ {
0.51 𝑓𝑜𝑟 𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑); 

0.53 𝑓𝑜𝑟 𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑);
       (77) 

𝛼6 =
𝛽4

𝛾3𝛿4
;  𝛽6 = (𝑅0

𝛾4𝛿4)
−1;         (78) 

𝛾4 = 10(1 − 𝛼);          (79) 

𝛽4 = (𝐴0𝛾2𝛿2 sin 𝜃)2𝛼4; [𝛽4] = (
𝑚

𝑠𝑒𝑐
∙ 𝑚4−5𝛼)

2

;      (80) 

𝛼4 = ((𝑡𝑎𝑛 𝜃𝑤)−𝛼 cos 𝜋𝛼 − (𝑡𝑎𝑛 𝜃𝑤)𝛼) ∙ ((𝑡𝑎𝑛 𝜃𝑤)−𝛼 cos 𝜋𝛼 − (cot 𝜃)2(𝑡𝑎𝑛 𝜃𝑤)𝛼) − (𝑡𝑎𝑛 𝜃𝑤)𝛼 ∙
((𝑡𝑎𝑛 𝜃𝑤)−𝛼 cos 𝜋𝛼 + (cot 𝜃)2(𝑡𝑎𝑛 𝜃𝑤)𝛼);       (81) 

𝛾3 = 𝐴0𝛾2𝛿2((5𝛼 − 4)𝛼3 + 𝛽3); [𝛾3] =
𝑚

𝑠𝑒𝑐
∙ 𝑚4−5𝛼;      (82) 

𝛼3 = sin 𝜃 (𝑡𝑎𝑛 𝜃𝑤)−𝛼(cos 𝜋𝛼) (3 − (tan 𝜃)−2) +
(cos𝜃)2

sin𝜃
(𝑡𝑎𝑛 𝜃𝑤)𝛼(3 − (tan 𝜃)2);  

           (83) 

𝛽3 =
(cos 𝜃)2

sin𝜃
(𝑡𝑎𝑛 𝜃𝑤)𝛼((tan 𝜃)2 − 1) − 2 sin 𝜃 (𝑡𝑎𝑛 𝜃𝑤)−𝛼 cos 𝜋𝛼 ;    (84) 

 

𝛿4 ≈ 𝛿4
′ =

2𝐴0

5(1−𝛼)𝛽𝛾𝜉𝑅1𝐴0
; [𝛿4] = [𝛿4

′ ] = (𝑚 ∙ 𝑚4−5𝛼)−1 ≈ 𝑚−2;    (85) 

 

𝐴0 = 𝑣0 = 500 
𝑚

𝑠𝑒𝑐
;         (86) 

 

𝑎 = 100 𝑚;          (87) 

 

𝐴3 =
4

𝐴2
2 −

1

𝐴2
+ 2;         (88) 

 

𝛾2 =
2(𝑟0𝑎)2

𝐴2(cos𝜃)4
; [𝛾2] = 𝑚4;        (89) 

 

𝛿2 = [
𝐴2(cos𝜃𝑤)5

2(𝑟0𝑎)2𝑎
]
𝛼

; [𝛿2] = 𝑚−5𝛼;        (90) 

 

𝛿6 =
𝐴0𝛾2𝛿2𝜆2

𝛾3
;          (91) 
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𝜆2 = 2(5𝛼 − 4)𝜉2 + sin 𝜃 𝜁2;        (92) 

𝜉2 = sin 𝜃 (𝑡𝑎𝑛 𝜃𝑤)−𝛼 cos 𝜋𝛼 +
cos 𝜃

tan𝜃
(𝑡𝑎𝑛 𝜃𝑤)𝛼;      (93) 

𝜁2 =
(𝑡𝑎𝑛 𝜃𝑤)𝛼

(cos𝜃)2
− 2(𝑡𝑎𝑛 𝜃𝑤)−𝛼 cos 𝜋𝛼 ;       (94) 

The constant 𝐶 were selected in such a way as to satisfy the following boundary conditions for (73) on the 

plane 𝑧 = 0.5: 

𝑇 = 𝑇𝑤 at {
𝑅 ≈ 0.51 𝑓𝑜𝑟 𝜃 = 𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑); 

𝑅 ≈ 0.53 𝑓𝑜𝑟 𝜃 = 𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑);
.      (95) 

Below in Figs. 22 and 23 the graphs corresponding to (73) are shown for 𝜒 = 10° (𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑)) and 

𝜒 = 20° (𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑)) respectively at 𝑣0 = 500 
𝑚

𝑠𝑒𝑐
 (supersonic case). 

 
 

Figure 22. The graph corresponding to (73) at 𝝌 = 𝟏𝟎° (𝜽𝒘 = 𝟖𝟎° (𝟏. 𝟒 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 

(supersonic case). 

 

 

 
 

Figure 23. The graph corresponding to (73) at 𝝌 = 𝟐𝟎° (𝜽𝒘 = 𝟕𝟎° (𝟏. 𝟐 𝒓𝒂𝒅)) and 𝒗𝟎 = 𝟓𝟎𝟎 
𝒎

𝒔𝒆𝒄
 

(supersonic case). (This graph should be shifted by approximately 0.53 m along R axis.) 
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When constructing the graphs in Figs. 22 and 23 we assume for constants in (73) such values: 

𝑇0 = 300 𝐾; 

𝑇𝑤 = {
1000 𝐾 𝑓𝑜𝑟 𝜃𝑤 = 80° (1.4 𝑟𝑎𝑑); 

1200 𝐾 𝑓𝑜𝑟 𝜃𝑤 = 70° (1.2 𝑟𝑎𝑑);
 

𝜇0 = 0.00001 𝑃𝑎 ∙ 𝑠𝑒𝑐; 

𝜌0 = 1 
𝑘𝑔

𝑚3 ; (density of air at 𝑇 ≈ 300 𝐾, 𝑝 ≈ 105𝑃𝑎); 

𝑅0 = 1 𝑚; 𝑅1 = 1 𝑚;   
𝐴1 = 2; 𝐴2 = 1; 𝐴3 = 5;   

𝐴0 = 𝑣0 = 500 
𝑚

𝑠𝑒𝑐
; 

𝑟0 = 1 𝑚; 
𝑎 = 100 𝑚; 
𝑅2 is taken from (77); 

𝑛 = 21. 
 

When constructing the graphs in Figs. 22 and 23 we used for last factor in (73) the approximate relation 𝑒𝑥 ≈ 1 + 𝑥. 

Graphs are somewhat blurred due to the simplifications we have adopted. 

 

It is easy seen from Figs. 22 and 23 that for a supersonic cone the temperature distribution in the plane 𝑧 = 0.5 is 

cascading and reaches a maximum on the cone wall. This differs from the case of hypersonic rotating disk where the 

temperature of air reaches a maximum on some distance from the surface of disk [15]. Besides, the temperature 

profiles in Figs. 22 and 23 have different curvature. Rather large value of the exponent in (61) (𝑛 = 21) can probably 

be explained by the choice of calibration coefficients 𝑎, 𝐴1, 𝐴2, 𝐴3, 𝑟0, 𝑅0 𝑎𝑛𝑑 𝑅1. 

 

Substituting in (73) corresponding value of z we can obtain full spatial distribution of the temperature around a 

supersonic cone. After what it will be possible to carry out the comparison of this distribution with experimental data. 

For instance, it is well-known at this moment that heat generation within the hypersonic boundary layer occurs due to 

dilatation and shear processes [13]. Dilatation heating, due to pressure, dominates the early transitional high-

temperature region. Shear-induced heating is the dominant process creating the latter high-temperature region, where 

the transition is almost complete. Zhu et al. [13] showed that the dilatation heating in the first high-temperature region 

of a smooth flared cone is more than five times its shear counterpart. We think that tunnel mathematics has ample 

means to model this result. So, new field for further investigations opens. 

 

4. Conclusion 

 

The solution of the Navier-Stokes equations using the tunnel mathematics apparatus is both simple and elegant, 

requiring strong mathematical training and a deep physical analysis of the problem. This method does not require 

special software and can be applied for the primary analysis of hydrodynamic problems. The results obtained for a 

supersonic cone make it possible to qualitatively estimate the thickness of the boundary layer, the shape of the shock 

wave, and whether the shock wave intersects the boundary layer. It was found that the lower the velocity of the incident 

flow and the larger the vertex angle of the cone, the smaller the values of the angles θ the shock wave acquires. 

Additionally, the smaller the vertex angle of the cone and the higher the velocity of the incident flow, the more the 

shape of the shock wave resembles a right cone. This behavior of the shock wave fully corresponds to the physical 

pattern of the phenomena. Furthermore, we obtained a simple expression for the temperature distribution on the plane 

z = const. By compiling these plane distributions, we can obtain the full spatial distribution of temperature around a 

supersonic cone. In this expression, we introduced two new definitions: oscillating density ρ^' and vortical factor Σ. 

This expression for the temperature distribution was derived by considering all terms in the original Navier-Stokes 

equations for compressible flow, without exceptions. Therefore, this expression holds certain methodological interest. 
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